Annals
 of the

Missouri Botanical Garden

Vol. 53
1966
No. 3

CENTRAL AMERICAN AND WEST INDIAN SPECIES OF INGA (LEGUMINOSAE) ${ }^{1}$

by Jorge León ${ }^{2}$
Missouri Botanical Garden, St. Louis

Abstract

Four new species of Inga, I. allenii, I. mortoniana, I. squamigera and I. tenuipedunculata, are described among 56 recognized from Central America and the West Indies. The species are divided into three sections with the largest sect. Inga further segregated into 13 series many of which are reported as new.

Among the tropical American Leguminosae, the genus Inga Scop. is outstanding in the number and complexity of its species. Although Central America is at the northern extreme of their geographic distribution, the many endemics and the intense cultivation of some species make this area particularly interesting for a monographic study. An attempt of this kind was made by Pittier (Jour. Dept. Agr. Porto Rico 13: 117-177, 1929) who had years before composed a general revision of the genus (Contr. U. S. Nat. Herb. 18: 173-224, 1916). Pittier dealt with the Central American species as a unit independent of the South American group; this fact and his inadequate herbarium representation, as well as the unnecessary creation of new series, restrict the general usefulness of his monographs. The only other treatment for the whole area was by Britton \& Rose (N. Amer. Fl. 23: 2-16, 1928) which, as pointed out elsewhere (Schery, Ann. Missouri Bot. Gard. 37: 189, 1950), is of limited use. Britton \& Killip (Ann. N. Y. Acad. Sci. 35: 110-124, 1936) studied the Mimosaceae of Colombia and their work is important in relation to the Panamanian species.

[^0]Differing from previous revisions, the one offered here considers the representation of Inga in Central America and the West Indies as a part of the South American complex. One result of this interpretation has been to reduce many names and to revive some old ones, notably several by Willdenow.

The standard herbarium techniques have been used in this study. However, field work in Central America plus mass collections of two cultivated species have helped considerably in the understanding of the range of variation.

History of the Genus

Plumier (Nov. Pl. Amer. Gen. 13, t. 19, 1703) was the first to describe Inga as a genus basing the name and characters on the description of Marcgravius (Hist. Pl. Bras. 111, 1648) and employing the vernacular name applied in Brazil to these trees. Linnaeus (Hort. Cliff. 209, 1737; Sp. Pl. 516, 1753) included it within Mimosa where it was maintained until Scopoli (Introd. 298, 1777) reinstated its generic rank. (For details of early history, see Gutiérrez, Rev. Fac. Nac. Agr. Colombia 7: 27-33, 1947).

During the subsequent decades the concept of the genus was extended to cover many species that are now included in allied genera, such as Pithecellobium, Calliandra, Zygia, Acacia, etc. This was owing mainly to the splitting of Mimosa as understood by Linnaeus, as well as to the discovery of many systematic novelties. Such a wide sense for Inga was held by de Candolle (Prodr. 2: 432, 1825), Martius (Flora 20: 113, 1837), Kunth (Mimos. 35, 1819; Nov. Gen. Sp. Pl. 6: 283, 1823), and especially by Willdenow (in L., Sp. Pl. 4: 1004, 1806) to whom many modern authors attribute the authorship of the genus.

Our present interpretation is based on that of Bentham (in Hook., Lond. Jour. Bot. 4:577, 1845) who restricted Inga to the once-pinnate-leaved species of the American Acaciae. Later, in his classic monograph of the Mimosae, Bentham (Trans. Linn. Soc. 30: 600, 1875) created the tribe Ingae to accommodate Lysoloma, Calliandra, Enterolobium, Pithecellobium, Inga, Affonsea, etc. Within the tribe, Affonsea and Inga are differentiated again from the other genera by their oncepinnate leaves. In more recent times this delimitation of Bentham has suffered only one important change: a group of Central American species with the above-mentioned characteristic has been separated from Inga on account of their very distinct fruits, and placed in Pithecellobium § caulanthon, a taxon to which Britton \& Rose (N. Amer. Fl. 23: 29, 1928) gave a generic rank under the name Cojoba (s.s.).

Affonsea St. Hil. is the genus most closely related to Inga. Bentham found it difficult to differentiate these genera on foliage characters alone; Affonsea seems to be an old or primitive genus with a several-carpelled gynoecium, a character that once in a while appears in Inga, probably a remainder of an ancient and common stock. The maintenance of Affonsea as a separate taxon based on an important floral character is confirmed by its geographic distribution that centers around the ancient geological shield of southeastern Brazil.

Morphology

Habit. All the species of Inga are well developed trees varying from 3 to 25 m tall in the Central American species. The tallest species, I. altissima Ducke of the Amazon, sometimes reaches more than 40 m while one of the smallest, I. cookii Pittier of Guatemala, stands only $3-4 \mathrm{~m}$, an unimportant element in the cloud forest. Inga often exhibits the typical mimosaceous pattern of branching, forming an umbrella-like top; but more commonly its branching is profuse and irregular. Little is known of its root system; the experience of coffee growers tends to mark some species, especially those of \S bourgonia, as trees with a highly divided and shallow system; in § inga the branching is less frequent and deeper. Some of the rain forest species have poorly developed buttresses.

Indument. The indument found upon the young parts and flowers tends to disappear with age in the majority of the species, although in some it is permanent. It offers good key characters in the delimitation of sections and series, and even in the diagnosis of some species it may profitably be used. A dense, ferrugineous pubescence is characteristic of some species in ser. calocephalae, while in ser. vulpinae two main types are found, both ferrugineous; short and sparsely pilose or setose. The flowers in ser. dysanthae are covered with a lanose indument. In § bourgonia, in contrast, the pubescence is scarce, and restricted to the nerves of the leaves and the tips of the perianth whorls. As usual in the family, the hairs are unbranched and glandular, and often have a typical thickening at the base.

Leaves. The leaves of Inga are once-pinnate, an unusual pattern in the Mimosaceae. The shortly petiolulate leaflets are arranged oppositely on a winged or cylindric rhachis, the terminal leaflet lacking and replaced by a linear appendix. The leaflets are slightly longer on one side of the rhachis, giving a somewhat asymmetric appearance to the whole leaf; in the uppermost pair they are larger and have narrow and oblique bases, while in the lower pairs they decrease in size and the base tends to be broader and symmetric. The leaflets are bifacial, more glabrous and lustrous above, with denser pubescence and prominent nerves beneath. According to the observations of Coester (Ueber die anat. Charak. der Mimos. 159-173, 1894) the internal structure of the leaves is very similar in the species that belong to the same series.

The rhachis has received considerable attention as a taxonomic character. It has been used to separate sections and series, based on its terete or winged appearance, and plays an important role in most keys at the specific level. Although in some instances it furnishes a rather constant character its usefulness probably has been overemphasized, for in the same species it may vary from broadly winged to subalate (wings in the upper section only) to completely terete (I. oerstediana, etc.)

A very striking feature is the presence of well developed interfoliolar glands. This type of extrafloral nectary is probably more complex in this genus than in any other of the Leguminosae and its function and development are practically unknown. Such glands correspond to the rhachial type (Zimmermann, Beih. Bot. Centralb. 49: 175, 1932) and as a rule are solitary at the insertion of the folioles,
although in some species, as I. hayesii, they are commonly found in pairs. In I. goldmanii they also occur on the midrib of the leaflet near its insertion on the rhachis; similar cases are found only in I. adenophylla and I. pruriens of South America. The shape of these glands varies from filiform and curved, in I. saffordiana, to thin and conic in ser. vulpinae, to short and patelliform in ser. inga; finally, in some species the glands are practically obsolete. Their shape and size varies with the age of the plant, being better developed in the young leaves and seedlings and often non-existent in the old leaves. As a key character they have received too much attention; their main importance is as a secondary character in separating sections or series rather than at the variable specific level. The extrafloral nectaries in Inga attract many insects. In the Piarco swamp, in Trinidad, the author observed in I. pilosula that they are used as traps by large red ants to capture smaller insects.

The growth of new foliage may occur simultaneously with the opening of the flowers, as in I. ruiziana, immediately thereafter, as in I. marginata, or completely independently of flowering, as in I. densiflora. The young leaves appear in conspicuous terminal flushes and are often, as in many tropical plants, bronze to red in color and of very delicate texture. The color of the new foliage differs according to the species and varies from light green (I. mortoniana) to pink (I. marginata) to ferrugineous red (I. edulis), and only lasts for a few days. During these short periods the trees present quite an attractive aspect. Observations on I. marginata in two localities with very different climates, and for several years, show that new flushes occur almost every two months, and that their occurence does not seem to be related to external factors but to the internal rhythm of the plants.

Proliferations. In certain species, particularly in I. punctata, I. sapindoides and I. edulis, large proliferations occur on the branchlets. Their formation has been attributed, in the cultivated I. feuillei of Peru, to the action of bacteria. These spherical structures attain a diameter up to $4-5 \mathrm{dm}$, and are formed by a proliferous and condensed ramification covered with calyx-like structures which open in age to disclose many minute buds subtended by bracts; normal or reduced leaves seldom appear.

Inflorescence. The basic structure of the inflorescence in Inga is the raceme. The most common form is a simple raceme that appears solitary or in groups, either terminal on the new growth or axillary on the defoliated nodes of the older wood, subtended by free or whorled bracts. Some species offer particular variants: for example, in I. mortoniana the racemes are grouped on short spurs on the branches, leafless but with a terminal vegetative bud; in other species the flowers appear on a terminal shoot, also without leaves, which at the end of the flowering season continues its growth and produces new leaves (I. ruiziana, etc.). In I. saffordiana flowers have been reported to grow on the trunk and main branches, but it is more probable that they are produced on a thick spur rather than directly from the trunk. This is the only reported instance of cauliflory in Inga, although it is of common occurrence in the allied genus Pithecellobium.

The axis of the inflorescence is divided into a lower peduncular portion and a
floral rhachis. The peduncle varies from slender, sometimes filiform, to stout and woody. In some species of \S bourgonia it is characteristically short, giving a cylindric appearance to the inflorescence; the floral rhachis is restricted in the other groups to the upper part of the axis. The flowers are subtended by bracts, which are persistent in some groups (ser. tetragonae), caducous in others (ser. inga).

The transition from raceme to spike is frequent in many species and in some is a permanent character. A further development in the structure of the inflorescence in Ing a is attained when the raceme is contracted into a short, mace-like receptacle with the individual flowers arranged in compressed spirals, thus giving to the inflorescence a spherical appearance. In several species, as I. heterophylla and I. quaternata, it is possible to observe intermediate stages between a short raceme and a globose inflorescence even in the same branch. Bentham created two sections to accommodate all species with a mace-like receptacle: § leptinga, where all the flowers are markedly pedicellate, and § diadema, with flowers sessile or almost so. A study of the groups shows all kinds of intermediates and for this reason no validity is here assigned to § diadema; Ducke (Bol. Tec. Inst. Agr. Norte 18: 20-34, 1931) and Macbride (Field Mus. Publ. Bot. 13: 6-47, 1943) have discarded it in local treatments of the genus.

Several flushes of flowers occur during the year and the blooming period may be different for species growing side by side. The inflorescences burst into bloom simultaneously over wide areas in a typical mimosaceous fashion (Burkart, Darwiniana 8: 33, 1948), and last for only a few days. The flowering is acropetal, and many of the upper buds never develop. Anthesis is more frequent during the afternoon and the flowers are visited by many species of insects, particularly Coleoptera.

Flowers. The arrangement of the flowers in the inflorescence of Inga follows an irregular, often spiral pattern. The flowers vary from sessile to long-pedicellate in the same species; common in ser. INGA is a type of pseudopedicel developed at the expense of the lower part of the calyx.

According to Thompson (Publ. Hartley Bot. Lab. 7: 47-50, 1931), the different parts of the flower are arranged on a spiral pattern following a $2 / 5$ sequence. There is a more or less well developed receptacle on which are based the calyx, the corolla, the staminal tube and the gynoecium. The corolla and the staminal tube are fused for some distance at the base, a character that Baillon (Hist. Pl. 10: 45, 1870) mentions also to occur in certain other groups of the Mimosaceae. A. Richard (Nouv. Élém. Bot. 2: 221, 1833), assuming a receptacular nature for this fusion, was led to conclude that the calyx, whose insertion is inferior to this level, is not actually a calyx but an involucre. Observations of many flowers show that the calyx is inserted on the receptacle, although this is not completely clear in some cases owing to its thickening at the base. De Candolle (Mém. Leg. 1: 39, 1825) considered the staminal tube and the corolla as hypogynous and mentions the occurrence of a similar receptacular structure in the Swartzieae. In some species there is an inconspicuous disc, between the staminal tube and the gynoecium, that possibly represents an inner reduced whorl of stamens.

The calyx consists of five valvate segments, united to form a tubular structure in the majority of the species, although campanulate in \S bourgonia and in I. saffordiana broadly turbinate. The five divisions or teeth are generally of equal size, but in some species such as I. acuminata, they are very irregular, some becoming obsolete. The calyx, in shape and size, furnishes perhaps the best taxonomic character in the genus.

The corolla is always gamopetalous, tubular to tubular-funnelform, short or elongate; the relative size and shape, as well as the indument, are of importance in both specific and sectional delimitation. The total length of the corolla was used by Pittier (Jour. Dept. Agr. Porto Rico 13: 122, 1929) to separate the § pseudinga Benth. into two subsections: tenuiflorae, with the corolla less than 2.5 cm long, and grandiflorae, with the corolla more than 2.5 cm long or, if shorter, then very broad. The indument is sparsely to densely pilose and generally appressed, and is always found on the outside only.

The androecium consists of numerous stamens fused at the lower part of the filaments into a definite tube of irregular thickness. The tube is exserted or included in relation to the corolla and, although many authors have founded specific differences on this character, it is in general without any sound taxonomic significance. The number of stamens varies so widely in the same species that it also is of restricted use. The filaments at anthesis are the most conspicuous part of the flower; they are white in most of the species, but yellow in I. pilosula, while in ser. dysanthae there is a pinkish tinge both in the corolla and the filaments. The two-celled, eglandular anthers contain in each theca two massulae formed by 16 , 24 , or 32 pollen grains which tend to remain together after shedding; this is probably one of the main factors determining the high sterility in Inga.

The gynoecium is formed by a sessile or slightly stipitate carpel ending in a filiform style usually longer than the staminal filaments. The ovary is elongate, with two series of anatropous ovules on the ventral placenta. The shape and indument vary in the different species. The style bears a discoid, entire or dissected stigma.

Fruit. The fruit in Inga varies from thin and dry to thick and fleshy. It has no definite pattern of dehiscence. Externally it shows four sides: two corresponding to the "margins" or vascular strands; the other two to the valves or intermediate areas. The different development of these four sides has produced three main types of legumes: 1) flat, when the valves are very broad in relation to the vascular margins-this is by far the most common type; 2) tetragonal, when the four sides have more or less the same width; 3) subterete, if the marginal faces are as wide as the valves or wider. In this case the development of vascular bundles gives a twisted, rope-like appearance to the legume. Intermediate types occur, but the general morphological characters mentioned above are of great significance in delimiting sections and species.

The fleshy structure of the legumes in Inga was the main character used by Willdenow in separating that genus from Acacia, Mimosa, etc. Although in some species the valves are thick and have a fleshy endocarp at maturity (I. jinicuil, I. densiflora, etc.), in the majority the walls of the fruit are thin and rather dry.

Seeds and germination. From the biological standpoint the seeds of Inga are the most interesting part of the plant, owing to the nakedness of the embryo and its "viviparous" germination. The first observations on this phenomenon were by Borzi (Rendic. Lincei 12: 131-140, 1903) who, in a classic paper, dealt in considerable detail with the seeds of I. feuillei DC., introduced at the botanic garden in Palermo. Similar observations made on Central American species permit a broader picture of the phenomenon.

The young seed is completely covered by a thin, pulpy testa that in age develops a series of layers derived, according to Borzi, from the malpighian stratum. The outer layers are formed by white, brilliant, thin-walled cells, rich in sugar and of a cotton-like appearance, while towards the inner side of the seed-coat the cells tend to be thicker and less juicy. This white, fleshy aril, referred to in the old publications as the 'pulp,' is the main edible part of the legume, and through selection has attained considerable thickness in some varieties.

When the seeds reach maturity the seed-coat opens at the distal end along longitudinal sutures, owing to the growth of the cotyledons, and eventually becomes completely separated from them, leaving the embryo naked; the dark green cotyledons tightly enclose it, their bevelled and undulate margins being complanate except at one end where each divides into two lobes, the four lobes forming a cavity through which the radicle eventually emerges. At maturity the cotyledons start to separate but generally with not enough force to cause the dehiscence of the pods; the radicle, nevertheless, starts growing and may attain several centimeters in length before the eventual opening of the legume, if indeed this ever dehisces. The growth of the plumule is meanwhile kept at a very low rate.

When the legumes are mature the splitting of the valves is often helped by birds, especially Psittacidae which visit the fruiting trees in large flocks. They open the pods, remove the seeds, eating the aril and allowing the embryos to escape and fall to the ground. Other animals and even man contribute likewise to the dispersal. Once the embryo reaches the ground, the already advanced germination accelerates and the hypocotyl develops rapidly, growing in a spiral. As a protection against excessive transpiration and high temperatures it is covered with minute, ferrugineous hairs in some species, while in others the outer cells are filled with a red pigment. The cotyledons, which have a large supply of food, are protected from the loss of water by several layers of cutinized cells rich in tannin that permits them to be subjected to considerable desiccation without affecting the growth of the seedling. The embryos, however, lacking a protective coat, have to find a very favorable habitat in order to develop; this is partially compensated by the large number of seeds produced per tree despite the high floral sterility. The frequent occurence of larvae of Diptera (Anestrepha ssp.) also contributes to prevent possible overpopulation.

Geography

The geographic distribution of Inga is restricted to the American tropics with some penetration into temperate areas both north and south. The total range extends from Durango and Coahuila ($25^{\circ} \mathrm{N}$) to the delta of the Plata River ($34^{\circ} \mathrm{S}$).

The collections available indicate that most of the species have continuous ranges. Some of them are very wide: from Mexico to Brazil (I. vera, I. punctata, I. quaternata); from Guatemala to Brazil (I. thibaudiana); from Costa Rica to Paraguay (I. marginata). The center of speciation appears to be the Amazon basin where, according to Ducke, there are 89 species. From this area the number diminishes in all directions. We find towards the south: Matto Grosso, 9 spp ; Rio Grande do Sul, 4 spp.; Uruguay, 2 spp.; towards the north: Venezuela, 30 spp.; Trinidad, 11 spp.; Guadeloupe, 3 spp.; Guatemala, 15 spp.; Coahuila, Mex., 1 sp . It is difficult at present to locate secondary centers of speciation, but recent explorations in western Colombia show that this area is second only to the Amazon basin in number and complexity of species.

A similar pattern of distribution is observed in the different sections and series which are richer in species in the Amazonian region and have an area progressively restricted in all directions.

Despite what some morphological characters would suggest (Stebbins, Amer. Nat. 86: 40, 1952), it seems that all species in this genus tend to grow in mesophytic to hygrophytic habitats. The frequency rate in the Amazon, according to Ducke, shows that in the hyleia, Inga is the predominant Leguminosae, in the capoeiras and the mata virgem their number is still high, while they are lacking completely in the campinas or campos altos. A similar distribution is found among the dry and wet areas in Central America. In the open forests of Guanacaste, Costa Rica, only two species have been found, both growing at the margins of rivers, while no less than 12 are reported from the rain forest in the northern part of that country.

As may be surmised, the means of dispersal preclude a rapid expansion and, despite the protective devices against drought found in the embryo, the seedlings require a clean and wet ground on which to grow. It is because flooded areas provided such a habitat that Inga is so common in them and also because whole fruits are frequently transported by rivers. Inga has not attained, however, the narrow adaptation to this habitat that occurs in some species of Pithecellobium. In areas where precipitation reaches a critical point for Inga, as in the Lesser Antilles, it is restricted to the high forests, where it becomes very successful. Its occurrence in adjacent savannas seems to be rather accidental.

The geological history of the area may help to explain the present geographic distribution. Fossils attributed to Inga have been found in the Cretaceous, both in Europe and North America, in Panama (Oligocene), in Costa Rica (Miocene) and in Bolivia (Pliocene). All consist of leaf impressions, and it is very difficult to assign them with certainty to Inga rather than to some other related genus. According to the present views on the biogeography of the area (Schuchert, Historical geology of the Antillean-Caribbean region, 106-110, 1935), it is quite possible that a migration of species from South America could have reached the Central American mainland in the upper Cretaceous. One of the most widely distributed species, I. vera, seems to have taken two routes of migration in Central America; one to northwestern Mexico, and the other towards the Greater Antilles; the latter were connected to the continent until the middle Miocene, which may explain the present
distribution of that species in Jamaica, the eastern tip of Cuba (introduced?), Hispaniola and Puerto Rico.

A different history occurs in the Lesser Antilles. The species found in this group of islands are markedly of Amazonian-Venezuelan origin. Of the 11 species found in Trinidad, 10 also occur in Venezuela. Two of them extend to Tobago and Martinique, while only one, I. fagifolia, is found farther than the Anegada passage which separates the continental shelf of the Greater Antilles from the volcanic arch extending from Anguilla to Grenada. Inga fagifolia is found in all the Lesser Antilles, Puerto Rico and Hispaniola but does not occur in Jamaica, an island which has been thoroughly explored. This species, of which closer allies are found in central and southern Brazil, extends to Mexico in one direction but evidently its distribution to the Lesser Antilles and Hispaniola occurred via the TrinidadVenezuela connection. As for many other plants, its distribution in the Lesser Antilles and Hispaniola may be explained either by the existence of a land bridge connecting the islands, a theory that has few supporters among geologists, or through waif dispersal. Two of the endemics of the Antilles, I. dominicensis (Dominica) and I. martinicensis (Martinique, Guadeloupe), are restricted to the old nucleus of the Lesser Antilles; the third, I. venosa, a poorly known species, occurs in Trinidad.

Economic Importance

Although none of the species of Inga has a basic economic importance, they are useful in a wide variety of ways and man has paid close attention to these trees in different stages of his civilization.

Fuel wood. Since colonial times, especially in the Antilles, the different species of Inga have supplied a good fuel wood for domestic and industrial uses. Oviedo, in 1535, mentions this use in the first sugar mills established in America, located in Hispaniola, and centuries later Père Labat refers to the same use in the French Antilles. At present it is of considerable importance in the coffee growing areas of Central America and Colombia; these densely populated regions depend for fuel production on the wood of Inga trimmed off each year from the shade trees in the coffee fields. As natural supplies are scarce and the consumption high, in some places all the fuel is supplied from such trees.

Shade for cacao and coffee. One of the most interesting discoveries of preColumbian agriculture was the use of leguminous trees for the shade of cacao. Cacao grows naturally under the tall trees of the rain forest, and when the early Indians started its cultivation in a formal way it was probably after long experimentation that they found that leguminous trees not only furnish a good type of shade but even increase the yield of cacao. This occurred, of course, several centuries before the discovery of nitrogen fixation. The first tree so used was Gliricidia sepium (Jacq.) Steud.

In cultivation of coffee, the effect of shade is to lengthen the life of the plant by reducing overproduction, maintaining a high fertility rate in the soil and preventing erosion. For this purpose Inga trees are planted at regular intervals in the coffee plots, and by corrective pruning they attain the size and shape desired
by the planter. The use of Inga as shade is discussed in the standard works on coffee culture (Marrero, Caribbean Forester 51: 54-71, 1954). Several species have been introduced into Africa (Angola) with the purpose of finding better shade trees for coffee.

For their rapid growth and the large quantities of organic matter produced I. edulis, I. oerstediana, I. speciosissima and others are preferred by the farmers. Very often the shade is not provided by trees of only one species, but several are planted together.

Within the genus, also, selection for the most desirable species is progressing. Inga paterno, once a favorite, now is almost eliminated by a witches'-broom disease that reduces its foliage considerably. In I. densiflora a pink fungus attacks the branchlets and seriously damages the tree. Among others, an important problem at present is to find species or varieties of higher resistance to the fungus disease and fruit flies (Anestrepha spp.).

Fruit. The utilization of Inga as fruit trees is an ancient one and probably started independently in different places. In the lower Amazon basin it was concentrated on I. edulis and I. cinnamomea, although the varieties of the former as found in Central America are scarcely edible. In southern Brazil the species used were I. affinis, I. uraguensis and I. barbata. In the higher Amazon I. densiflora is frequently planted and the type specimen comes from a cultivated tree. Ducke has pointed out that the plants in cultivation produce better fruits than the ones growing in the forest. Apparently selection already is advanced.

A second center of domestication is found in Peru where I. feuillei, the pacay, was widely cultivated before the Paracas culture. The trees are abundant in the coastal lowlands and evidently received much attention from the aborigines since the pods are commonly figured in the ceramics of Paracas, Chimu, etc. Of special importance was the fact that the legumes could be stored for a long period (Yacovleff \& Herrera, Rev. Mus. Nac. Lima 3: 267, 1934), and this explains how its cultivation covered more or less the same areas as the Inca Empire from Chile and Bolivia to Ecuador. Inga feuillei is the only species of the genus that has been planted as a fruit tree outside the natural range, in California, Polynesia, Italy, etc.

In Central America the only species that is planted for its fruit is the jinicuil, I. jinicuil, the cultivation of which started in Mexico, probably in the highlands of Veracruz. Fruits of this species, as well as of I. paterno, I. densiflora and I. sapindoides, are commonly seen in the markets, while the less appreciated I. punctata, I. spectabilis, etc., very seldom appear. Among the poorer classes in Central America another use is given to the large seeds of some species: these are cooked, cut in small pieces, and eaten with other vegetables.

As indicated before, selection has been directed to obtain larger pods and thicker arils. Further problems that have arisen are to find plants resistant to the attacks of fungi and insects. Up to now the method of selection has been the establishment of progenies of outstanding trees with subsequent dispersion of selected material.

Vernacular Names

Several names are now in common use for Inga. The Brazilian word inga, recorded first by Marcgravius and later applied to the genus by Plumier and Scopoli, is still of wide use in Brazil in an inclusive sense, followed by an adjective for specific determination, e.g. inga cipó (I. edulis), inga peua (I. ruiziana), etc. Another South American name is pacay or pacae, probably of Peruvian origin but now extending to Uruguay, as pacay de los bañados (I. uraguensis).

In Central America, the Antilles, and northern South America (Colombia, Venezuela) the name guamo or guabo is generally used. This word seems to have originated in the Caribbean, perhaps in Hispaniola, and it is doubtful whether its spread was pre- or post-Columbian. From the north comes the name cuajiniquil (in Nahuatl, "the tree with pendant pods"), which is used with various modifications from Veracruz to Costa Rica.

Within the area where the last two names are used there are local ones of restricted interest. Most of them come from Indian dialects, but some have a common use at present such as pepeto, chalun, and paterno in Guatemala and EI Salvador, chalauitl in Mexico, etc. The name bribri is used in two widely separated areas: the lagoon of Chiriquí, in Panama, and the coastal zone of British Honduras. In some parts of Mexico (Sinaloa, Michoacán) the Spanish name vainillo is applied to some species of Inga. In the Lesser Antilles and Haiti they are generally called by the French name pois-doux, while in the British islands, "Spanish oak," recorded by Plukenet in 1641, is reserved for I. fagifolia.

Infrageneric Categories

The current division of Inga into sections and series was first established by Bentham (in Hook., Lond. Jour. Bot. 4: 577-621, 1845) and with minor changes maintained in his later publications (Trans. Linn. Soc. 30: 335-664, 1875; in Mart., Fl. Bras. 15: 458-500, 1876). From the very beginning Bentham had a broad understanding of the genus and the grouping he established seems, even now, to have a certain natural basis. However, many species were put in the wrong group, which tends to obscure the natural limits of sections and series. The delimitation of series by Bentham is difficult to follow in the keys, since they are based on highly variable and overlapping characters. In 1929 Pittier tried to redefine them, with not much success, and also created two new series for § inga based on the structure of the legumes.

In the present treatment the categories established by Bentham are followed in large part, although some modifications are introduced. His five sections, leptinga, diadema, bourgonia, pseudinga and euinga, are reduced to three: leptinga, bourgonia and inga. The first of these includes the species with globose inflorescences, divided by Bentham between leptinga, if the flowers were pedicellate, and diadema, if sessile. The fact that the length of the pedicel is a highly variable character, even on the same specimen, is the reason for abandoning this separation. There also is no important difference between sections pSEudinga and inga;

Bentham and Pittier very often placed a species in either section depending upon the adequacy of material available (see I. sapindoides).

Section bourgonia is the most natural group among those established by Bentham and is the one that has suffered fewest transfers. On the basis of morphology alone it seems to be a rather primitive group evidently related to Pithecellobium. The species here are clearly defined in Central America and the West Indies, but in southern Brazil and Paraguay wide variability has been observed. The small and almost glabrous flowers with campanulate calyx are arranged in long, loose spikes, as in I. fagifolia, or on congested and short rhachises, as in I. pezizifera. The group has wide distribution, and Central America offers only two endemics: I. longispica, allied to the I. coruscans complex, more developed in Colombia than elsewhere, and the dubious I. belicensis, related to I. fagifolia, although several important characters maintain its individuality.

No clear relations can be established between § bourgonia and the other two sections. This is not extraordinary within the tropical Leguminosae, where genera are established by uniting groups of morphologically allied species of suspected polyphyletic origin.

Section inga are a vast assemblage of intergrading groups of species held together by the possession of well developed, more or less pubescent flowers. In a total evaluation of the genus this section may acquire a subgeneric status and probably the present series could be considered as sections. As will be seen under Taxonomy, the present treatment offers a redefinition of the series of Bentham and Pittier. The ser. gymnopodae and pilosiusculae have been split in the present treatment into smaller and more natural units. The former were a vast assemblage of very different groups of species held together and differentiated by one character, the presence or absence of wings on the rhachis. As mentioned before, this is a very unstable character even in the same individual. The new series, although established in the area under study on a fraction of the total number of species, are all of them well represented in South America. The series punctatae seems to have some relation with § bourgonia, while the ser. pilosulae form a transition to the large flowered species of the subsequent series. The ser. calocephalae of Bentham and Pittier have been divided into four independent series, one of them restricted to Central America. At the same time a revaluation of ser. tetragonae has been necessary; this series, created by Pittier, includes in the present treatment some species ascribed previously to the ser. calocephalae. By faulty correlation of legume and flower character, the same species might be classified by Bentham or by Pittier as one of the § pseudinga-ser. calocephalae if the specimen were in flower, or one of the § euinga-ser. tetragonae if it were in fruit. The use of the latter name is maintained and the ser. calocephalae are restricted to a South American group centered around I. macrophylla and I. fastuosa and represented in Central America only by I. mucuna and in the West Indies by I. venosa, endemic to Trinidad.

Section leptinga is represented in Central America by nine species, one of which also occurs in Trinidad; in the rest of the West Indies there is none. This section is an assemblage of morphologically different species held together by one
common character, the spherical or clavate structure of the floral receptacle, giving an umbellate or globose appearance to the inflorescence. As mentioned before, this floral arrangement is probably the result of a contraction of the spikes or racemes and may be reached independently in different groups of species. This is corroborated by the trend, observed in some species of the ser. pilosiusculae, towards a condensation of the floral rhachis, as I. venusta, I. hayesii and especially the I. acuminata complex.

Of special interest in Central America is the presence of a group including I. jinicuil, I. paterno and I. mortoniana, without close affinities in neighboring areas but evidently related to the Amazonian I. cinnamomea, I. cordistipula, etc. Two other species are noteworthy from the morphological standpoint: I. saffordiana, with a particular flower structure not found in any other species in the genus, and I. portobellensis, in which the size and shape of the floral parts produce the most outstanding inflorescence in Inga; this species has some distant allies in South America (e.g. I. inflata Ducke.)

Section leptinga is considered, then, more as a horizontal polyphyletic stage than as a group of naturally related species having a common origin. This is true of the section as a whole, but evidently within it clusters of species with strong natural affinity may be discerned. With the exception of the one about I. jinicuil no other complex occurs in the area in study. The other species in the section have close affinities in South America.

Speciation

In the delimitation of species in this genus, one is confronted with the situation that some are clearly defined entities, while in others the overlapping of taxonomic characters make an acceptable definition almost impossible. Among the first group, I. fagifolia, I. punctata, I. thibaudiana, and a few others present a minimal variability in spite of their large areas of distribution. The reverse is true, especially in the ser. inga and pilosiusculae, where species are formed by clusters of populations, each with a certain morphological type but clearly intergrading towards other intraspecific groups. In the past, it has been common to give these variants specific rank, but as more material becomes available, it has been possible to fill the intergrading spaces. In some cases the group variation has a clear distribution pattern and shows marked clines, but in others the aberrant characters appear with no geographic correlation, scattered throughout the whole range of distribution. Thus the variant called I. fissicalyx Pittier, with elongate stipules, sepals and leaves, occurs among otherwise typical populations of I. vera in widely separated parts of Mexico and Costa Rica.

Of the dilemma of raising to specific level all the possible variants and increasing the names ad infinitum, or considering them as minor variants within a species, the second has been preferred for this study. Some of the most important groups of variants are discussed as infraspecific entities without attempting any nomenclatorial definition.

The factors that have produced the striking variability in Inga are unknown. It has been suggested that hybridization is important, and this is possibly true in the
species cultivated as shade trees where different populations are planted together and then reproduced by mixed progenies. On the other hand, there are some factors that operate in reducing the effectiveness of hybridization, such as the type of pollination, seasonal isolation, and in natural populations the restricted dispersal.

Climatic and edaphic factors may have contributed considerably to the formation of infraspecific groups. Species such as I. oerstediana, which grows from sea level to almost $2,000 \mathrm{~m}$ elevation in Colombia and Central America, show such different types between the coastal and mountain populations that these have received different common names. However, they have many characters in common and the intergrading phases occur in the intermediate areas.

Geographical isolation in terms of geological periods is also very important. In I. vera, for example, the populations in the greater Antilles have been isolated from the bulk of the species probably since the late Miocene and offer quite a number of separating characters. The same occurs in the semi-arid areas of northern and central Mexico, where this species clearly shows subspecific differentiation.

There is no information on mutation patterns in Inga. However, observation of large populations, such as are found in coffee fields, reveals a remarkable polymorphism which is difficult to attribute to segregation alone. The accompanying illustration of three types of leaves of I. edulis shows a common pattern of variation (Fig. 1).

The human factor has been very important in speciation. Types cultivated

Fig. 1. Variation in a population of Inga edulis Mart.; representative leaves of three trees grown for shade in the same coffee grove. $\times 4$.
as fruit trees or for shade have been selected, introduced into new areas, and may have contributed to the formation of new variants through hybridization.

Endemism is particularly important in four areas: the highlands of Mexico, the mountains of Costa Rica and the coastal lowlands of Panama; another center in the Lesser Antilles occupies the oldest section of the volcanic arch, from Martinique to Dominica. The endemics of Costa Rica, Panama, and the Caribbean islands show more affinities with South American species, while in the Mexican endemics this relationship is less marked. No one of the four centers already mentioned could be compared in number and variability of species with the Amazon basin or the Colombian cordilleras.

Study Material

For the preparation of this study materials of the following herbaria were consulted: B, CR, EAP, F, GH, IAIAS, ILL, K, MO, NY, RB, US and VEN. I wish to acknowledge my indebtedness to the curators of the herbaria mentioned, and particularly to the Director and Staff of the Missouri Botanical Garden, where this work was completed.

Taxonomy

Inga [Plum.] Scop., Introd. Hist. Nat. 298, 1777; Willd. in L., Sp. Pl. 4: 1012, 1806; DC., Prodr. 2: 432, 1825; Benth. in Hook., Lond. Jour. Bot. 4: 577, 1845; Benth., Trans. Linn. Soc. 30: 601, 1875; Pittier, Contr. U. S. Nat. Herb. 18: 173, 1916; Pittier, Jour. Dept. Agr. Porto Rico 13: 117, 1929.

Amosa Neck., Elem. 2: 459, 1790.
Torealia Nor., Verh. Batay. Gen. 5, Art. IV. 4, 1790.
Ingaria Raf., Sylva Tell. 119, 1838.
Feuilleea O. Ktze., Rev. Gen. PI. 1: 182, 1891 (pro parte).
Trees; branchlets glabrous or pubescent, lenticellate in age. Leaves alternate, once-pinnate; leaflets opposite, in 2 to many pairs, the terminal largest, the petiolules very short; rhachis terete or winged, ending in a linear, caducous appendage, the nectarial glands always present at the insertion of the leaflets; petiole terete or winged, with a clearly marked pulvinus; stipules small to large, generally caducous. Inflorescences axillary or terminal, 1 to ∞, fasciculate or paniculate; peduncle elongate to obsolete; rhachis elongate to condensed in a spheric or clavate structure, the bracts small or large, caducous or persistent. Flowers sessile to pedicellate, regular, white or yellow; calyx minute to very large, campanulate to tubular, synsepalous, the 5 segments regular or unequal, valvate in bud; corolla tubular to funnelform, sympetalous, 5 -lobed, usually appressed-pilose; stamens numerous, the filaments united below, free above, included or exserted, the anthers eglandular, the pollen in massulae; gynoecium l-carpellate, the ovary elongate, glabrous or pubescent, the style generally longer than the filaments, the stigma simple or lobed. Legume flat, quadragonal, or subterete, the margins narrower or wider than the valves, irregularly dehiscent; seeds oblong, covered by a loose, succulent aril, the cotyledons coriaceous.
Type species: Inga vera Willd.
a. Inflorescence racemose.
b. Calyx minute, less than 2 mm long, glabrous or very sparsely pubescent; legume flat, glabrous I. bourgonia
bb. Calyx well developed, more than 2 mm long, pubescent or glabrate; legume flat, tetragonal or subterete
II. INGA
(p. 289)
c. Legume flat with narrow margins, or tetragonal with the margins and valvular sides more or less equally broad.
d. Corolla less than 15 mm long (except in I. multijuga and I. skutchii), always less than 3 mm wide.
e. Calyx regular, the teeth of the same size (except in I. skutchii and I. pinetorum).
f. Calyx pilose to glabrescent; rhachis winged, marginate or terete; glands patelliform; bracts short and broad.
g. Leaflets 2-4 pairs; rhachis terete

1. punctatae
gg. Leaflets 4-10 pairs; rhachis winged, terete or marginate.
h. Leaflets 5-8 pairs; rhachis terete; corolla more than 10 mm long (except in I. ruiziana ...2. multijugae (p. 297)
hh. Leaflets 5 or less pairs; rhachis winged or marginate: corolla less than 10 mm long
2. densiflorae
ff. Calyx setose, the teeth subulate; rhachis winged; glands stipitate; bracts narrow, lanceolate 4. leptanthae
ee. Calyx markedly cleft on 1 or 2 sides
i. Flowers small, corolla less than 12 mm long, congested in a very short spike; plant glabrous5. acuminatae
ii. Flowers relatively large, corolla more than 12 mm long, in loose spikes; leaves and flowers yellow-pilose 6. pilosulae (p. 314)
dd. Corolla more than 15 mm long, or if less, then more than 3 mm wide
j. Calyx more than 15 mm long; legume densely ferrugine-ous-pubescent.
k. Calyx narrow, less than 5 mm wide, more than 17 mm long
3. calocephalae
kk. Calyx broad, 8-12 mm wide, less than 17 mm long 8. GOLDMANIANAE
jj. Calyx less than 15 mm long.
l. Calyx cupular, densely lanose; rhachis terete (in the Central American species) or winged; flowers distant, often pedicellate; bracts caducous ..9. dysanthae
(p. 320)
4. Calyx tubular, pilose or glabrescent; rhachis generally winged; flowers congested; bracts persistent or subpersistent.
m. Legume flat.
n. Leaves and branchlets glabrous or sparsely pilose; glands short, patelliform; legume thick, $30-70 \mathrm{~cm}$ long
5. spectabiles
nn . Leaves and branchlets densely yellow or ferrugineous-pilose, in age glabrous; glands thin, long-stipitate; legume thin, less than 30 cm long 11. vulpinae (p. 323)
mm . Legume tetragonal 12. tetragonae
cc. Legume subterete, the valvular sides reduced and narrower than the margins, sulcate
aa. Inflorescence capituliform or umbelliform; flowers small, glabrous or tomentose, legume flat
III. § leptinga (p. 344)

Section I. bourgonia Benth. in Hook., Lond. Jour. Bot. 4: 585, 1845 (as Burgonia).
Flowers minute, glabrous or sparsely pubescent, sessile or very shortly pedicellate, in rather loose inflorescences; calyx campanulate, less than 2 mm long; corolla tubular-funnelform, 3-4 times longer than the calyx. Inflorescences with peduncle shorter or longer than the rhachis, in the first case as long cylindric spikes, in the latter as ovoid to oblong spikes or racemes. Legume flat, glabrous, with prominent margins. Leaves glabrous or very sparsely pubescent, the lateral nerves distant, the rhachis terete, marginate or narrowly winged. Trees with dense crown and rather shallow root system.
species . . . 1-6.
a. Floral rhachis longer than the peduncle; inflorescence cylindric, lax, $4-8 \mathrm{~cm}$ long.
b. Foliar rhachis winged or marginate

1. I. marginata
bb. Foliar rhachis not winged, sometimes scarcely marginate.
c. Spikes about 17 cm long. Costa Rica
2. I. Longispica
cc. Spikes less than 15 cm long.
d. Leaflets generally in 2-3 pairs, the upper pair less than 16 cm long; stipules minute. Mexico to Panama 3. I. fagifolia
dd. Leaflets in 3 pairs, the upper pair more than 16 cm long;
stipules conspicuous. Panama ...4. I. coruscans
aa. Floral rhachis shorter than the peduncle; inflorescence conic, congested, 1-2 cm long.
e. Foliar rhachis winged or marginate; upper leaflets less than 12 cm long.

British Honduras ...
ee. Foliar rhachis terete; upper leaflets more than 15 cm long. Panama

1. Inga marginata Willd. in L., Sp. Pl. 4: 1015, 1806. (Type Bredemeyer s.n. photo)
Inga sapida H.B.K., Nov. Gen. Sp. Pl. 6: 286, 1824, non Benth. (ex char.; Type Humboldt \& Bonpland s.n., not seen)
Mimosa semialata Vell., Fl. Flum. 11: $t .5$, 1835. (ex ic.)

Inga guayaquilensis G. Don, Gen. Hist. Dichl. Pl. 2: 391, 1832 (fide Bentham). (Type Ruiz \& Pavon s.n., not seen)
I. odorata G. Don, loc. cit. 388 (fide Bentham). (Type Ruiz \& Pavon s.n., not seen)
I. semialata (Vell.) Mart., Flora 20, Bd. 2 Beibl. 111, 1837.
I. excelsa Poeppig, Nov. Gen. Sp. Pl. 3:78, 1845 (fide Bentham). (Type Poeppig s.n., not seen)
I. puberula Benth. in Hook., Lond. Jour. Bot. 4:589, 1845 (fide Bentham). (Type Pohl s.n., not seen)
I. pycnostachya Benth., loc. cit. (Type Matthews s.n., not seen)

Feuilleea marginata (Willd.) O. Ktze., Rev. Gen. Pl. 1: 188, 1891.
Trees up to 20 m tall, the crown dense and spreading; branchlets terete, glabrous, lenticellate. Leaves with 2 pairs of leaflets; leaflets elliptic to falciform, acute to long-acuminate at the apex, the base acute and strongly asymmetric, above dark green, lustrous, glabrous to sparsely pilose, the 4-6 pairs of lateral nerves distant and prominent, beneath glabrous, the nerves prominent, the upper pair narrowly elliptic to falciform, $7-14 \mathrm{~cm}$ long, $2.5-5.0 \mathrm{~cm}$ wide, the lower pair elliptic, $4-9 \mathrm{~cm}$ long, $1.5-4.0 \mathrm{~cm}$ wide; the petiolules up to 3 mm long, densely pilose; rhachis cuneately winged to marginate, $2-4 \mathrm{~cm}$ long, glabrous, the glands patelliform, less than 1.5 mm wide; petiole winged or marginate, $1.0-2.5 \mathrm{~cm}$ long, the pulvinus terete and dark, about 0.5 cm long, minutely pilose; stipules lanceolate, up to 5 mm long, striate, pubescent, caducous. Inflorescences $1-4$, axillary; peduncle terete, $0.5-3.0 \mathrm{~cm}$ long, densely pubescent to glabrous; rhachis $4-11 \mathrm{~cm}$ long, the bracts linear, 2 mm long, persistent. Flowers distant or congested, sessile to pedicellate, the pedicels up to 3 mm long; calyx minute, campanulate, about 1 mm long, pilose at the base, glabrescent above, the teeth acute and more pubescent; corolla 3 mm long, narrowly tubular in the lower third, funnelform above, glabrous below, the lobes short, pilose; staminal tube exserted. Legume flat, oblong, deeply constricted between the seeds, up to 14 cm long and 1.5 cm wide, glabrous.

Common in the wet forests at below 800 m elevation. Costa Rica and Panama. (Widely distributed in South America, extending to Brazil and Bolivia.)

Vernacular name: cuajiniquil negro (Costa Rica).
Costa Rica: alajuela: La Tigra, San Carlos, Barquero 14 (IAIAS, MO); Pata de Gallo, San Ramón, Brenes 6589 (F), Brenes 6646 (F), Santiago de San Ramón, Brenes 6689 (F). cartago: Atirro, J. D. Smith 6493 (GH, NY, US); Las Vueltas, Tucurrique, Tonduz 12744 (CR); Tuis, Tonduz 11349 (NY, US); Turrialba, Gregory 1881 (IAIAS), Holdridge 2475 (IAIAS), de Wolf 175 (IAIAS), guanacaste: Laguna Arenal, Brenes 12657 (F); Naranjos Agrios, Standley \& Valerio 46387 (F, US) ; Nicoya, M. Valerio 501 (CR, F); Quebrada Serena, Standley \& Valerio 46077 (F, US); Tilarán, J. Valerio 51 (US). heredia: Puente de Mulas, Echeverría 347 (CR, F), Sáenz 61 (CR, F). limon: Jiménez, J. J. Cooper 10198 (US); Montecristo, Standley \& Valerio 48645 (F); Sipurio, Tonduz 8710 (CR, F, GH, US) ; Siquirres, Lankester 948 (US). puntarenas: Buenos Aires, Tonduz 6690 (F, US) ; Golfito, Allen 6242 (EAP). san jose: Aserrí, León 3838 (IAIAS, MO); El General, Skutch 4111 (MO, NY, US), Skutch 4288 (MO, NY).

Panama: bocas del toro: Almirante, Daytonia Farm, Cooper 546 (F); Changuinola Valley, Dunlap 282 (US), Seibert 1582 (MO); Chiriqui Lagoon, von Wedel 1378 (GH, MO, US); Water Valley, Chiriqui Lagoon, von Wedel 1549 (GH), 1807 (GH, MO, US). canal zone: Barro Colorado Island, Bangham 535 (F), Shattuck 516 (F), Standley 40996 (US), Woodworth \& Vestal 610 (F), Zetek 3824 (F), 4322 (F); Gatún, Pittier 6512 (GH, NY, US) ; without locality, Hayes 950 (NY). cocle: Valle de Antón, Allen 2231 (F, MO, US). darien: Sambú River, Pittier 5579 (US).

The Central American material of I. marginata shows very slight variability; all the leaves are bijugate, with one exception, and offer a remarkable similarity in shape and structure; the indument varies from none to a short and dense pubescence on the costa and main nerves. In contrast the variability in South America is very high, especially in Brazil and Paraguay. Its relation to I. cylindrica (Vell.) Mart. is not clear and many of the published varieties also are of dubious standing.

In Central America I. marginata is commonly planted as a shade tree in the coffee fields, although the dense crown and the superficial root system hardly make it desirable.

2. Inga longispica Standley, Publ. Field Mus. Nat. Hist., Bot. Ser., 18: 497, 1937.

 (Type Brenes 6371)Trees; branchlets terete, striate, glabrous, densely lenticellate. Leaves with 3 pairs of leaflets; leaflets subcoriaceous, elliptic to lanceolate-oblong, the apex acuminate, the acumen $0.5-1.0 \mathrm{~cm}$ long, mucronate, the base acute, decurrent, above dark green, lustrous, glabrous except for a sparse pilosity on the costa, punctate, the 6-8 pairs of lateral nerves slightly prominent or sunken, beneath paler, glabrous, the nerves prominent, the tertiary nervation conspicuous and finely reticulate, the upper pair elliptic, oblique, $6-11 \mathrm{~cm}$ long, $2-4 \mathrm{~cm}$ wide, the medium and lower pairs lanceolate-elliptic, the lowermost $3-5 \mathrm{~cm}$ long, $1.0-2.5 \mathrm{~cm}$ wide, the petiolules $1-2 \mathrm{~mm}$ long, pilose; rhachis terete, caniculate above, $4-6 \mathrm{~cm}$ long, sparsely pilose, the glands small, stipitate, pertuse; petiole terete, $1.0-1.5 \mathrm{~cm}$ long, glabrous, the pulvinus about one third of the length, darker and thicker. Inflorescences axillary, often at the defoliated nodes; peduncle 3-6 cm long, striate, papillose; rhachis 8-13 cm long, the bracts minute, deciduous. Flowers distant, sessile; calyx campanulate, about 2 mm long, sparsely pilose, the teeth obtuse; corolla tubular-funnelform, $5-6 \mathrm{~mm}$ long, sparsely pilose, the lobes acute, about 2 mm long, sometimes retroflexed; staminal tube included, the filaments $1.5-2.0 \mathrm{~cm}$ long. Legume unknown.

Wet forests of central Costa Rica, at 1000-1200 m elevation.
Costa Rica: alajuela: La Palma, San Ramón, Brenes 6371 (CR, F, IAIAS); Vara Blanca, Skutch 3705 (MO, NY, US). san jose: La Palma de Coronado, Holdridge 5948 (IAIAS).

An isolated species remarkable for the long spikes and short, sessile flowers. It seems related to I. coruscans H.B.K. in the general habit, differing however in the structure of the inflorescence and the size and shape of the leaflets.
3. Inga fagifolia (L.) Willd. ex Benth., Trans. Linn. Soc. 30: 607, 1875.-Fig. 2.

Mimosa fagifolia L., Sp. Pl. 516, 1753 (Based on Pluk., Alm. t. 241, fig 21), non Jacq. (1763).
M. laurina Sw., Prodr. 85, 1788. (ex char.) (Type Masson s.n., not seen)

Inga laurina (Sw.) Willd. in L., Sp. Pl. 4: 1018, 1806.
Mimosa tetraphylla Vell., Fl. Flum. 11: t. 8, 1827. (ex ic.)
Inga tetraphylla (Vell.) Mart., Flora 20: Beibl. 112, 1837.
Feuilleea laurina (Sw.) O. Ktze., Rev. Gen. Pl. 1: 184, 1891.
F. fagifolia (L.) O. Ktze., loc. cit. 187.

Trees with dense crown; branchlets terete, gray or whitish, glabrous, striate, lenticellate. Leaves relatively small, with 2-3 pairs of leaflets; leaflets coriaceous, obovate to narrowly elliptic, often very asymmetric, rounded, broadly acuminate or retuse at the apex, the base acute, unequal, above deep green, lustrous, glabrous, with 5-7 pairs of prominent nerves, the reticulate nervation conspicuous, beneath paler, glabrous, the nerves prominent, the upper pair elliptic to obovate, $4-16 \mathrm{~cm}$ long, 2-6 cm wide, the lower pair $3-9 \mathrm{~cm}$ long, $1-4 \mathrm{~cm}$ wide; rhachis terete or

Fig. 2. Inga fagifolia (L.) Willd. ex Benth.
marginate, with a groove in the upper side, $2-6 \mathrm{~cm}$ long, glabrous or sparsely pilose, the glands patelliform, short-stipitate, less than 1 mm in diam; petiole terete, $1.0-2.5 \mathrm{~cm}$ long, sulcate above, minutely pubescent to glabrous, the pulvinus thick and dark; stipules oblong, up to 7 mm long, 4 mm wide, glabrous or pubescent at the round apex, thick and persistent. Inflorescences axillary, 1-5 spikes in the same axil, congested in the terminal branchlets; peduncle terete, $1-4 \mathrm{~cm}$ long, striate, glabrous or sparsely pilose; rhachis angulate, $3-11 \mathrm{~cm}$ long, glabrous or rarely sparsely pilose. Flowers sessile, in rather loose spikes; calyx tubular, 1-2 mm long, striate, glabrous or sparsely pilose, the teeth shallow, pubescent at the tips; corolla funnelform, the throat about half the total length, $3-6 \mathrm{~mm}$ long, glabrous or sparsely pilose, the lobes acute, not spreading, about 1 mm long, pubescent at the apex; staminal tube included to long-exserted, the filaments up to 12 mm long. Legume flat, oblong, $10-30 \mathrm{~cm}$ long, $2-5 \mathrm{~cm}$ wide, transversely striate, glabrous, the borders not markedly elevated.

Wet to semi-dry forests, or highland savannas. Mexico to Panama; Haiti to Trinidad. (South America.)

Vernacular names: caspiro, nacaspiro (Guatemala-Standley); paternillo (El Salvador-Calderón); jina (Dominican Republic-Valeur); "Spanish oak" (Lesser Antilles).

Mexico: chiapas: Escuintla, Matuda 46 (MO, NY, US), 1862 (F, K, US). guerrero: Acapulco, Palmer 584 (F, GH, K, MO, NY, US). jalisco: Hacienda San Marcos, Pringle 5494 (GH). nayarit: Ixtapa, Nelson 4149 (US); Tepic, González Ortega 43 (US). oaxaca: Tuxtepec, Chiltepec, Martínez-Calderón 171 (US).

Guatemala: alta verapaz: Sepacuité, Cook \& Griggs 760 (US), 761 (US). escuintla: Escuintla, J. D. Smith 2825 (US), Hayes s.n. (GH); Rio Burrión, NE of Escuintla, Standley 89578 (F, US); without locality, Aguilar 1685 (F). izabel: Quiriguá, Standley 24253 (US). retalhuleu: Retalhuleu, Standley 88829 (F); Retalhuleu to Asintal, Standley 87808 (F); Nueva Linda, Standley 87254 (F), 87304 (F). suchitepequez: Mazatenango, Las Animas, Maxon \& Hay 3451 (NY, US).

El Salvador: ahuachapan: Ahuachapán, Standley \& Padilla 2836 (F). la paz: Zacatecoluca, Calderón 293 (GH, NY, US). san salvador: Tonacotepeque, Calderón 215 (GH, NY, US), Standley 19450 (GH, NY, US). san vicente: San Vicente, Standley 21744 (F, GH, MO, NY, US). sonsonate: Juayúa, Pittier 1990 (US).

Nicaragua: zelaya: El Recreo, Standley 19812 (F).
Costa Rica: cartago: Las Vueltas, Tucurrique, Tonduz 12991 (US), León 3001 (IAIAS).

Panama: canal zone: Barro Colorado Island, Bangham 547 (F), M. Brown 65 (F), Shattuck 797 (F), Wettmore \& Abbe 129 (F, GH), Zetek 4356 (F). chirieu: Boca Chica, Horconcitos, Pittier 5119 (GH, NY, US), Seemann 1689 (GH). cocle: Penonomé, R. S. Williams 532 (NY, US). herrera: Ocú, Allen 4037 (F, MO). panama: Capira, Allen 1688 (GH, NY, US); El Cermeño, Zetek 4403 (F, MO, NY); Río Pacora, Allen 817 (F, GH, MO, US); Río Tapia, Standley 30673 (US).

Harti: sud: Carbajel to Bois-Charles, Ekman 6063 (US); Morne Baymond, Christ 2092 (US).

Dominican Republic: alta gracia: Higüey, Taylor 417 (NY). duarte: San Francisco de Macorís, Abbot 2212 (US). la vega: Contanza, Tuerckheim 3300 (F, GH, MO, NY, US). macoris: Consuelo, Taylor 326 (F, NY). monte cristi: Monción, Mera (Herb. Jim. 2089) (US), Valeur 716 (F, MO, NY, US). pacificador: Pimentel, Abbot 636 (US). samana: Samaná, Muller s.n. (US); Sánchez, Abbot 2733 (US). seibo: Azui, Taylor 291 (F, NY). without locality: Scarff 18a (F), Wright, Parry \& Brummel 75 (GH, US), 86 (F).

Puerto Rico: aguadilla: Maricao, Otero \& Alvarez 550 (F, MO). arecibo: Utuado, Sargent 109 (US), Sintenis 6504 (F, GH, MO, NY, US). mayaguez: Cabo Rojo, Sintenis

724 (GH, US); Las Mesas, Holm 271 (GH); Mayagüez, Britton \mathcal{G} Marble 589 (US), Cowell 555 (NY), Heller 4376 (F, MO, NY), Miller 1635 (US); Sabana Grande, Sargent 464 (US); San Sebastián, Sargent 228 (US). guayama: Barranquitas, Britton E Britton 8827 (NY, US); Caguas, Heller 925 (F, NY, US); Sierra de Naguabo, Shafer 3198 (NY, US). humacao: Sierra de Yabucoa, Sintenis 2607 (US). ponce: Coamo, El Tendal, Britton, Britton \& Brown 6022 (NY); Coamo Springs, Underwood \mathcal{G} Griggs 514 (NY, US); Ponce, Britton \& Shafer 1741 (NY, US); Ponce to Coamo, Heller 508 (F, NY, US). san Juan: Bayamón, Stahl 384 (US) ; Río Piedras, Goll, Cook \& Collins 302 (NY, US), J. R. Johnston 581 (NY), Bro. Hiram s. n. (NY), Stevenson 241 (US), 581 (US), 2467 (NY, US). viequez island: Isabel Segunda, Shafer 2490 (NY, US); without locality, Blaner 186 (NY). province unknown: Monte Torrecilla, Britton, Cowell \& Brown 5609 (NY). without locality: Kuntze 465 (NY), Sessé, Mociño, etc. 3785 (F).

Virgen Gorda: Forests, Fishlock 309 (NY).
Tortola: Town to High Bash, Britton \& Shafer 716 (F, NY, US).
St. Juan: Bordeaux, Britton © Shafer 561 (NY, US).
St. Thomas: Signalhill, Eggers s. n. (US); St. Peter, Britton \& Marble 1226 (F, NY, US); without locality, Eggers 264 (GH).

St. Croix: Mt. Eagle, Thompson 429 (NY); without locality, Bertero s. n. (MO).
Saba: without locality, Bolding 1578 (NY).
St. Kitts: Wingfield Estate, Britton \mathcal{E} Cowell 484 (NY, US).
Antigua: Donning Valley, Box 1031 (US); without locality, Rose, Fitch \& Russell 3457 (F, GH, MO, NY, US).

Montserrat: Soufrière, Shafer 587 (F, NY, US).
Guadeloupe: Bailliff, Stehlé 280 (US); Ile de Saints, Stehlé 92 (NY); Point-a-Pitre, Stehlé 237 (NY); without locality, Questel 2637 (US), Duss 2633 (NY, US).

Dominica: Hampstead, F. E. Lloyd 655 (NY); Lisdara Estate, G. P. Cooper 185 (F, GH, NY, US); St. Acomant, F. E. Lloyd 564 (NY); Sylvania Estate, Hodge 611 (NY, US).

Martinique: Macouba, Hahn 436 (GH); Parnasse, Duss 1157 (NY, US); Rivière de la Case Pilote, Hahn 1169 (US) ; Rivière Mme. Tivoli, Stehlé 5690 (F, US); without locality, Fairchild s. n. (US), Sieber's distr. Fl. Mart. 324 (GH, MO).

Barbados: Dodds, St. Philip, Bot. Sta. Herb. Barbados 418 (F, GH, NY); without locality, Waby 105 (F).

St. Vincent: Windsor Forest, J. S. Beard 231 (MO); without locality, Smith \& Smith 677 (GH, NY), 1047 (NY), 1912 (GH).

Grenada: Les Avocats, St. David’s, Broadway s. n. (GH, MO, NY, US); Grand Etang, Sterring 293 (US).

Trinidad: without locality, Sieber 120 (GH, MO) ; Trin. Bot. Gard. Herb. 1410 (US).
Inga fagifolia is one of the species with more ample geographic distribution within the genus, extending from Jalisco to southern Brazil. It is also one of the few species of Inga that do well in rather dry climates; its habitat, however, ranges from the dry scrublands in some Caribbean islands to the rain forest or the wet cloudy forests of the Central American highlands. A remarkable morphological variability, as expected, is found throughout the range: 1) From Mexico to Panama, 3-jugate leaved specimens predominate, as well as large fruits. 2) In the Antilles the species extends from Hispaniola to Trinidad, showing a recent relation between the continental bloc of the Greater Antilles and the volcanic islands of the Lesser Antilles; here the specimens show bijugate leaves, small and thick fruits, but in other vegetative characters as well as in the flower structure they are much like the Central American plants.

Although the original name M. fagifolia was given to a West Indian plant (from Plukenet's Almagestum giving the locality as Barbados), I. fagifolia in recent times has been applied to the Brazilian plants, using the name I. laurina for the Central American and Antillean plants. After examining many specimens,
some of them mentioned by Bentham, it seems that the differential characters between the two, such as the length of the staminal tube, are so variable within the same specimens or in small areas (including some in Central America), that they do not justify a specific segregation.
4. Inga coruscans Willd. in L., Sp. Pl. 4: 1017, 1806. (Type Bonpland s.n. photo)

Mimosa coruscans (Willd.) Poir. in Lam., Encycl. Suppl. 1: 43, 1810.
Feuilleea coruscans (Willd.) O. Ktze., Rev. Gen. Pl. 1: 87, 1891.
Inga caldasiana Britton \& Killip, Ann. N. Y. Acad. Sci. 35: 115, 1936. (Type Mutis 3539)
Trees up to 20 m tall; branchlets terete, glabrous, lenticellate. Leaves with 3 pairs of leaflets; leaflets coriaceous or chartaceous, elliptic to lanceolate, the apex obtuse to broadly apiculate, the base acute or obtuse, above lustrous and glabrous, the 6-10 lateral nerves distant and impressed, with tertiary nervation conspicuous, beneath glabrous, the nerves markedly prominent, the upper pair elliptic to obovate, $15-17 \mathrm{~cm}$ long, $6-7 \mathrm{~cm}$ wide, the intermediate pair elliptic, $10-14 \mathrm{~cm}$ long, 3-6 cm wide, the basal pair oblong to lanceolate-oblong, about 9 cm long, 4 cm wide, the petiolules thick and dark, about 3 mm long; rhachis terete to slightly marginate, $6-10 \mathrm{~cm}$ long, glabrous, the glands patelliform, about 2 mm in diam; petiole terete, $1-2 \mathrm{~cm}$ long, glabrous, the pulvinus thick and striate, $0.5-1.0 \mathrm{~cm}$ long; stipules elliptic, up to 14 mm long and 2 mm wide, tomentose to glabrous, striate. Inflorescences axillary, $1-4$ spikes in the defoliated axils or in short, stipulate branchlets; pedunc.e slender, $1.0-2.5 \mathrm{~cm}$ long, glabrous to puberulent; rhachis angulate, $1-2 \mathrm{~cm}$ long, the bracts spatulate, reflexed, about 1 mm long. Flowers sessile, congested; calyx campanulate, sparsely pilose, 1 mm long, the teeth small and irregular; corolla tubular-funnelform, $4-5 \mathrm{~mm}$ long, glabrous or puberulent at the tip, the lobes acute, 1 mm long; staminal tube slightly exserted; ovary oblong, compressed. Legume flat, oblong, straight, about 22 cm long, 2 cm wide.

Costa Rica, Panama. (Colombia.) Apparently a rare species, occurring at very different elevations.

Costa Rica: puntarenas: Río Esquinas, Kil. 42, Allen 5433 (F, MO).
Panama: darien: Yaviza, Allen 4585 (F, MO).
The present interpretation of this species is based on the study of a photograph of the type and the detailed description of Kunth in H.B.K. (Nov. Gen. Sp. Pl. 6: 284, 1823). Four collections from Colombia have been examined that match very well the photo and description; the same is true of the Panamanian specimen. It is quite probable that I. lopadenia Harms may belong here, as well as some Venezuelan specimens, thus giving more amplitude to the present geographic area.
5. Inga belicensis Standley, Publ. Field Mus. Nat. Hist., Bot. Ser., 4: 307, 1940.
(Type Schipp 24)
Trees up to 17 m tall; branchlets terete, puberulent when young, in age glabrate. Leaves with 3 pairs of leaflets; leaflets coriaceous, obovate to elliptic, the apex acute to acuminate, the acumen curved, sometimes mucronate, 1.5 cm long,
the base cuneate, often oblique, above lustrous, glabrous, the nerves scarcely prominent, beneath dull, glabrous, the nerves conspicuous, the upper pair obovate to obovate-elliptic, $8-12 \mathrm{~cm}$ long, $2.5-4.5 \mathrm{~cm}$ wide, the lower pair elliptic and oblique, the basal pair $4-6 \mathrm{~cm}$ long, $1.5-2.5 \mathrm{~cm}$ wide, petiolules short, $1-2 \mathrm{~mm}$ long, pilose; rhachis narrowly winged to marginate, $3-7 \mathrm{~cm}$ long, glabrous, the glands stipitate, glabrous, pertuse; petiole terete, $0.5-1.0 \mathrm{~cm}$ long, glabrous, the pulvinus thick, one fourth the length of the petiole. Inflorescences 1-2 in each axil; peduncle terete, $1.5-3.5 \mathrm{~cm}$ long, puberulent, 3 times longer than the rhachis; rhachis $0.5-1.5 \mathrm{~cm}$ long, the bracts triangular, less than 1 mm long, pubescent, apparently persistent. Flowers sessile, in congested spikes; calyx campanulate, 1.5 mm long, glabrescent, the lobes acute, about 1.5 mm long, pilose; staminal tube exserted. Legume flat, oblong, $10-14 \mathrm{~cm}$ long, $2.0-2.5 \mathrm{~cm}$ wide, glabrous or pilose at the margins, the borders elevated.

Lowlands of British Honduras and adjacent Guatemala.
British Honduras: Baboon Ridge, Stann Creek District, Gentle 3134 (NY); Mullins River Road, Schipp 24 (F, MO); Saint Augustin, El Cayo District, Lundell 6599 (F, GH, NY); Valentin, El Cayo, Lundell 6325 (F).

Guatemala: izabal: Bananera to La Presa, Steyermark 38158 (F).
Inga belicensis is a close ally of I. fagifolia. The latter is generally restricted in Central America to the Pacific slope, and it is very possible that the Belice plant represents a variant due to a long isolation. In foliage and fruit the two species practically are indistinguishable, but some minor variations in the shape of the leaflets do occur: for instance, the marked acumination in I. belicensis. There is also a trend in this species to have a wider rhachis. The most important differences are in the inflorescence: in I. fagifolia the peduncular part is always a fraction of the total axis, while in I. belicensis the floral rhachis is restricted to one third the length of the peduncle. The Guatemalan plant is referred here tentatively as it is a sterile specimen.
6. Inga pezizifera Benth. in Hook., Lond. Jour. Bot. 4: 587, 1845. (Type Schomburgk 124 photo)
Feuilleea pezizifera (Benth.) O. Ktze., Rev. Gen. Pl. 1: 188, 1891.
Inga microstachya Britton \& Killip, Ann. N. Y. Acad. Sci. 35: 115, 1936. (Type Mutis 3633)

Trees; branchlets terete, glabrous, markedly pedicellate. Leaves with 3-5 pairs of leaflets; leaflets chartaceous, elliptic to lanceolate-elliptic, the apex markedly acuminate, the broad acumen up to 1 cm long, the base rounded to acute, strongly asymmetric, above lustrous, glabrous, the nerves prominent, the upper pair lanceolate-elliptic, $12-18 \mathrm{~cm}$ long, $4-7 \mathrm{~cm}$ wide, the lower pair lanceolate $7-9 \mathrm{~cm}$ long, $3-4 \mathrm{~cm}$ wide; the petiolules short, 2 mm long, glabrous; rhachis terete to angulate, generally broader and flattened in the upper part of each interfoliolar section, $7-15 \mathrm{~cm}$ long glabrous or puberulent, the glands prominent, crateriform, 2 mm in diam, glabrous; petiole terete, broad at the pulvinar section $1.5-2.0 \mathrm{~cm}$ long, glabrous or puberulent; stipules oval-lanceolate, $5-6 \mathrm{~mm}$ long, pilose, cadu-
cous. Inflorescences spicate, axillary, 1-5 per axil, frequently on defoliated branchlets of the previous growth; peduncle slender, $2.5-4.0 \mathrm{~cm}$ long, puberulent; rhachis $1.5-3.5 \mathrm{~cm}$ long, the bracts minute, spatulate, about 1.5 mm long; puberulent, semi-persistent. Flowers congested, sessile; calyx conic, $1.5-2.0 \mathrm{~mm}$ long; corolla tubular-funnelform, $5-6 \mathrm{~mm}$ long, sparsely puberulent, the lobes acute, about 1 mm long; staminal tube slightly exserted; ovary oblong, short, sparsely pilose. Legume unknown.

Panama. (Colombia to Brazil.)
Panama: canal zone: Barro Colorado Island, Kenoyer 363 (US), Zetek 3867 (F, MO); Chagres batteries to Fort San Lorenzo, Maxon \& Valentine 6979 (GH, US).

A species well marked for its fascicled inflorescences, of which there are up to five in each axil, and for its acute to narrowly acuminate leaflets. In many of its foliar characters it remotely resembles I. ruiziana, with which it is often confused in the herbaria; the shape of the leaflets, however, is very different in the two species. Some Brazilian specimens, such as Ducke 35538 , labeled as I. subsericantha Ducke, also belong here.

Section II. inga

§ Evinga Benth. in Hook., Lond. Jour. Bot. 4: 606, 1845.
§ Pseudinga Benth., loc. cit. 590.
Trees; branchlets terete to angulate, glabrous to densely pubescent. Leaves large, with 2 to many pairs of leaflets; leaflets sparsely to densely pilose, the lateral nerves numerous; rhachis winged or terete. Inflorescence spicate or racemose, one to several, fascicled in the axils, or paniculate or corymbose at the ends of the branchlets; peduncle generally longer than the rhachis. Flowers congested at the tip of the inflorescence, sessile or pedicellate; calyx tubular to turbinate, pubescent in the Central American and West Indian species, sometimes glabrescent; corolla tubular, appressed-pilose. Legume flat, tetragonal or subterete, pubescent or glabrate in age.
series . . . 1-13
Series 1. punctatae J. León, ser. nov.
Arbor; ramuli teretes vel angulati lenticellati. Folia foliolorum paribus 2-4; rhachis teres glandulis sessilibus patelliformibus. Inflorescentiae axillares vel brevipedunculatae, 1-multi. Flores sessiles vel brevipedicellati; calyx brevis, tubularis, pilosus vel glaber; corolla tubularis, sparse pilosa. Legumina plana marginibus elevatis.

Trees; branchlets terete or angulate, pilose to glabrous, lenticellate. Leaves with 2-4 pairs of leaflets, glabrous or ferrugineous pilose; rhachis terete, the glands sessile, patelliform. Inflorescences axillary or in short spur, 1-many. Flowers sessile to shortly pedicellate; calyx short, tubular, pilose or glabrous; corolla tubular, sparsely pilose. Legume flat, large or small, the margins elevated.

Type species: I. punctata Willd.

This series forms a transition between § Bourgonia and the rest of § Inga. It is formed by one species of wide distribution and by endemics, some of them poorly known, narrowly distributed species. Four of them occur in Central America and two in the Lesser Antilles. The most aberrant of all is I. pinetorum of the pine dunes in the Gulf of Mexico.
species . . . 7-13
a. Branchlets, leaves and legume sparsely pilose to glabrous; calyx regular.
b. Flowers sessile.
c. Leaflets flat, elliptic; inflorescences 1-7 per axil; peduncle slender.
d. Legume $6-16 \mathrm{~cm}$ long, $2-3 \mathrm{~cm}$ wide.
e. Calyx pubescent, $3-5 \mathrm{~mm}$ long. Mexico to Panama ...7. I. punctata
ee. Calyx glabrous, 6-7 mm long. Honduras \qquad 8. I. yunckeri
dd. Legume $20-32 \mathrm{~cm}$ long, $3.5-4.0 \mathrm{~cm}$ wide, Costa Rica 9. I. Latipes
cc. Leaflets bullate, broadly elliptic; inflorescences solitary, the peduncle stout. Martinique
10. I. martinicensis
b. Flowers pedicellate.
f. Upper leaflets $11-18 \mathrm{~cm}$ long. Mexico
11. I. brevipedicellata
ff. Upper leaflets $8-10 \mathrm{~cm}$ long. Dominica
12. I. dominicensis
aa. Branchlets, leaves and legume densely pilose; calyx often cleft. Mexico, British
Honduras
13. I. pinetorum
7. Inga punctata Willd. in L., Sp. Pl. 4: 1016, 1810. (Type Hoffmannsegg s.n. photo)

Mimosa sericea Poir. in Lam., Encycl. Suppl. 1:42, 1810 (pro parte). (Based partially on Inga punctata Willd.)
Inga leptoloba Schlecht., Linnaea 12:560, 1838. (Type Schiede s.n.)
I. punctata Willd. var. panamensis Benth., Trans. Linn. Soc. 30: 613, 1875. (Type Fendler 89)

Feuilleea leptoloba (Schlecht.) O. Ktze., Rev. Gen. Pl. 1: 188, 1891.
F. punctata (Willd.) O. Ktze., loc. cit.

Inga popayanensis Pittier, Contr. U. S. Nat. Herb. 18: 185, 1916. (Type Lehmann 5751)
I. ierensis Britton, Bull. Torrey Bot. Club 50:52, 1923. (Type Britton \& Hazen 1627)
I. punctata Willd. subsp. chagrensis Pittier, Jour. Dept. Agr. Porto Rico 13: 135, 1929. (Type Maxon 4788)
Trees 6 to 15 m tall; branchlets terete or angulate, strigose-puberulent when young, glabrate in age, densely lenticellate. Leaves with 2-3 pairs of leaflets; leaflets elliptic to lanceolate, the apex obtuse, acute or acuminate, mucronate, the base rounded to cuneate, above lustrous, strigose-pubescent, the lateral nerves slightly prominent, straight, parallel, with the reticulate nervation conspicuous on both sides, beneath paler, sparsely pilose except on the costa and main nerves which are densely pubescent and markedly prominent, the upper pair elliptic-lanceolate, 6-17 cm long, $3-7 \mathrm{~cm}$ wide, the basal pair lanceolate to ovate, $3-11 \mathrm{~cm}$ long, $1-5 \mathrm{~cm}$ wide, the petiolules $1-4 \mathrm{~mm}$ long, pubescent; rhachis terete or submarginate, 2-11 cm long, shortly pilose to glabrate, the glands orbicular to patelliform, often obsolete; petiole terete, $1-3 \mathrm{~cm}$ long appressed-pubescent to glabrate, the pulvinus darker and thicker, about 1 cm long; stipules subulate, $3-8 \mathrm{~mm}$ long, pilose, caducous. Inflorescences solitary or in groups of 2-7, fascicled at the axils, or paniculate on spurs or terminal branchlets; peduncle angulate, $1.5-5.0 \mathrm{~cm}$ long, ap-pressed-pilose; rhachis $0.5-3.0 \mathrm{~cm}$ long, densely pilose, the bracts lanceolate, acute, $2-3 \mathrm{~mm}$ long, pubescent, caducous. Flowers sessile; calyx subturbinate $3-5 \mathrm{~mm}$
long, puberulent, the teeth irregular, about 0.5 mm long; corolla tubular, expanded above, $4-10 \mathrm{~mm}$ long, appressed-pilose, the lobes lanceolate, $1-2 \mathrm{~mm}$ long; staminal tube included to slightly exserted, the free part of the filaments about 1 cm long; ovary and style glabrous, the stigma capitate. Legume flat, straight to arcuate, oblong, $4-16 \mathrm{~cm}$ long, $2-3 \mathrm{~cm}$ wide, mucronate at the apex, rounded at the base, sparsely pilose when young, in age glabrate, the borders prominent; seeds $4-20$, oblong, thick, $1-2 \mathrm{~cm}$ long, the aril fleshy.

Mexico to Panama; Trinidad and Tobago. (Northern part of South America.)

Vernacular names: acotope (Veracruz-L1. Williams); paterno, cerel, ixcapirol, pepeto (Guatemala-Standley); pepeto negro (El Salvador-Standley); cuajiniquil (Costa Rica).

Mexico: chiapas: Escuintla, Monte Ovando, Matuda 16046 (EAP, F); La Suiza, Matuda 1915 (EAP, F, K, NY, US). oaxaca: Choapam, Yaveo, Mexia 9258 (F, GH, MO, NY); Concordia, Morton \& Makrinius 2489 (F, US), Reko 3618 (US); Tuxtepec, Nelson 377 (NY). tabasco: Balancan, Reforma, Matuda 3220 (F, NY); San Juan Bautista-Atasta, Rovirosa 128 (US); Tenosique, Boca Cerro, Matuda 3548 (F, MO, NY). veracruz: Barranca de Panoya, C. A. Purpus 8556 (GH, MO, US); Cabrestos, Liebmann 4428 (F, US); Córdoba, Bourgeau 2043 (GH, K), 2320 (GH, US); Fortin C. A. Purpus 8599 (GH, MO, NY, US) ; Fortuño, Ll. Williams 8991 (F); Hacienda de Jovo, Liebmann 4434 (F, US); Jalapa, Hacienda La Laguna, Schiede s. n. (F, GH, MO); Mata de San Juan, Liebmann 4435 (F, US); Mirador, Liebmann 4436 (F. GH, US), Seler 5139 (GH), 5142 (GH); Potrero de Cazadero, Liebmann 4433 (F); Santa Lucrecia, Mell 520 (F, NY, US), 577 (F, US), C. L. Smith 1146 (EAP, GH, MO, NY); Tantoyuca, Ervendberg 4 (GH); Tezonapa, Orcutt 3113 (F); Zacualpán C. A. Purpus 8165 (F, GH, MO, NY, US), 8168 (GH, MO, NY, US), 8584 (GH, MO, NY, US), 10696 (GH, NY, US), 10719 (NY, US), 10784 (NY, US), 11696 (GH, NY, US), 10719 (NY, US), 10784 (NY, US), 11696 (NY, 14001 (F, MO, NY). without locality: Kerber 403 (US), Sessé, Mociño, etc. 3773 (F), $3785 b$ (F).

British Honduras: belize: Belize River, Cook \mathcal{H} Martin 34 (US); Manatee Lagoon, Peck 334 (GH); Sibun River, Bartlett 11369 (GH, NY, US), Gentle 1520 (F, MO, NY, US), 1723 (F). el cayo: Cocquericot, Bartlett 12068 (F, NY, US); Vaca, Gentle 2451 (F, MO). stann creek: Big Creek, Schipp 163 (F, GH, NY, US); El Dorado, Schipp 403 (F); Middlessex, Schipp 380 (F, GH, K, MO, NY), Gentle 2729 (F, NY, US); Mullins River, Schipp 23 (F, GH, MO, US). without locality: Peck 571 (GH).

Guatemala: alta verapaz: Gubilguiitz, Steyermark 44333 (F), Tuerckheim 8195 (GH, NY, US); Sepacuité, Cook \& Griggs 491 (US), 636 (US), Owen 2 (US); Setzimaj, Cook \mathcal{G} Griggs 51 (US), 52 (US), 53 (US); Tactic, Standley 90400 (F). chimaltenango: Panajabal, Standley 62134 (F). EsCuintla: Las Lajas, Standley 64821 (F); Pacayal, Sta. Emilia, Bequaert 29 (F, GH). izabal: Los Amates, Kellermann 7147 (NY); Morales, Kellermann 6109 (US); Quiriguá, Standley 24487 (GH, NY, US); Río Chacón, H. Johnson 1201 (US); Sta. Inés, Galusser 7 (F). peten: La Libertad, Aguilar 419 (F, NY), Lundell 2105 (US), 3090 (US). Quezaltenango: Colombia, Skutch 1332 (F); San Francisco de Miramar, Pittier 68 (NY, US); Sta. María de Jesús, Standley 68404 (F). santa rosa: Las Viñas, Heyde \& Lux 6094 (F, GH, MO, NY, US). suchitepequez: San Augustín, Steyermark 48068 (F); Volcán Zunil, Monte Cristo, Steyermark 35222 (F). wirthout nocality: Record \& Kuylen 72 (GH, NY, US).

El Salvador: ahuachapan: Ataco, Standley \& Padilla 2710 (F). cabanas: San Nicholás, Calderón 1574, (GH, MO, NY, US). la libertad: Comasagua, Calderón 1354 (GH, MO, NY, US) ; Santa Tecla, Levy 784 (EAP). la union: La Unión, Carlson 663 (F). santa ana: Metapán, Carlson 785 (F). without locality: Renson 328 (US), Calderón 2255 (NY, US).

Honduras: atlantida: Tela, Standley 54532 (F, US), 56616 (F, US), 56870 (F, NY, US). comayagua: Pito Solo, Edwards 436 (F), 467 (F, US). cortes: Río Lindo, Williams \& Molina 17635 (EAP); San Pedro Sula, Thieme 5209 (GH, US). olancho: Catamarcas,

Standley 18233 (F). tegucigalpa: Mata de la Flor, von Hagen 1140 (F, NY). yoro: Subirana, von Hagen 1099 (F, NY).

Nicaragua: zelaya: Braggman's Bluff, Englesing 238 (F); Toumarin, Río Grande, Molina 2414 (EAP).

Costa Rica: alajuela: La Calera, San Ramón, Brenes 11575 (CR, F); La Palma, San Ramón, Brenes 5353 (CR, F); Piedades, San Ramón, Brenes 5478 (CR, F); San Carlos, Cook \& Doyle 92 (US), Pittier 16698 (NY); San Luís de Zarcero, A. Smith 1366 (F, NY); San Pedro, San Ramón, Brenes 4442 (CR, F), 4677 (CR, F), 5093 (F), 6632 (CR, F); San Miguel, San Ramón, Brenes 17040 (CR, F); Villa Quesada, A. Smith 2929 (MO). cartago: Cartago, Stork 1223 (F); Dulce Nombre, Standley 35882 (US); La Carpintera, Standley 34508 (US); Turrialba, Holdridge 2570 (IAIAS), 2571 (IAIAS), León 1522 (IAIAS), 3811 (IAIAS), 3814 (IAIAS), 3821 (IAIAS). GUANACASTE: Líbano, Standley \& Valerio 44919 (F, NY, US); Santa Maria, Dodge \& Thomas 6262 (F, GH, MO, NY); Tilarán, Standley \& Valerio 44171 (F, NY, US), 44507 (F, NY, US), 44508 (F, NY, US), 46086 (F, NY, US). heredia: Barba, León 400 (CR, F); Río Ciruelas, Biolley 3230 (US); San Francisco, León 3830 (IAIAS): Sto. Domingo, Echeverría 314 (CR, F), 315 (CR, F). Limon: Limón, Standley 27270 (US); Shirores, Tonduz 9354 (CR, F), 9355 (CR, F). puntarenas: Golfito, Allen 5620 (EAP, F) ; Puerto Jiménez, Brenes 12223 (CR, F); Río Sándalo, Dodge \& Georger 10431 (F, MO). san jose: Cuesta de Tarrazú, Tonduz 7859 (US); El General, Skutch 3915 (MO, NY) ; San José, Holway s. n. (US), Inst. Phys. Geogr. Costa Rica 17146 (US), Jiménez 821 (US), Standley 33286 (US), 34786 (US), 41207 (NY, US), Tonduz 7020 (CR, MO, NY, US) ; Santa María de Dota, Standley 42451 (NY, US), 42522 (NY, US).

Panama: bocas del toro: Bocas del Toro. Carleton 176 (GH); Changuinola Valley, Cooper \mathcal{G} Slater 73 (F, NY), 100 (US), Dunlap 551 (F); Chíriquí Lagoon, von Wedel 1069 (GH, MO), 1230 (GH, MO); Fish Creek, von Wedel 2357 (MO), 2387 (GH, MO, NY). canal zone: Barro Colorado Island, Avilés 116 (F), Bailey 620 (F), 764 (F), Bangham 461 (F), Kenoyer 366 (US), Shattuck 339 (F), 751 (F), Wetmore \& Abbe 181 (F, GH), Woodworth \& Vestal 359 (F), Zetek 3468 (F), 3485 (F), 3837 (F, MO), 3847 (F, MO), 3848 (F), 3849 (F); Chagres, Fendler 89 (GH, MO); Culebra, Pittier 2309 (NY, US); Fort Sherman, Standley 30950 (US), 31162 (US); Gatún, Hayes 55 (NY), Goldman 1865 (US), Maxon 4788 (GH, MO, NY); Río Chagres, Steyermark \& Allen 16778 (GH); Vigía, Dodge, Steyermark \& Allen 16530 (GH, MO). Chiriqui: Boquete, Davidson 473 (F), 814 (F), Little 6053 (MO). cocle: Valle de Antón, Allen 2773 (US), 3700 (F, MO). colon: Río Culebra, Pittier 4161 (NY, US). darien: El Real, Allen 966 (GH, MO, NY) ; Pinogana, Allen 4281 (MO). panama: Chepo, Hunter \& Allen 95 (F, GH, MO, US), Klug 33 (US); Río Tapia, Standley 28084 (NY, US). veraguas: Tabasara to Sona, Woodson, Seibert E Allen 489 (MO). province unknown: Bayares River, Mell s.n. (NY). without locality: Seemann 406 (GH).
trinidad: without locality, Britton \& Hazen 1627 (US).
товago: Crown Grace, Broadway 3909 (F, MO); The Widow. Broadway 4652 (F, MO, NY).

In Mexico and Central America this species has been divided into I. punctata and I. leptoloba on the basis of the number of pairs of leaflets, two in the first, three in the second. Another differential character, mentioned by Pittier, is the shape of the base of the leaflet, rounded and wide in I. punctata, cuneate in I. leptoloba. More recently, however, the trend is to consider these species as forming a single one (cf. Schery, Ann. Missouri Bot. Gard. 37: 221, 1950), since the variability shown by the specimens points to no consistent difference that would justify a specific segregation. After considerable study of the specimens mentioned the conclusion here reached agrees with the reduction of I. leptoloba. It seems necessary, however, to observe that there are some interesting points to consider for future studies: 1) In Mexico, British Honduras and Guatemala no specimen has only bijugate leaves, while the collections with trijugate leaves only form a very high percentage, and the mixed (some leaves with two pairs, others
with three in the same collection) are very rare. In contrast, 88% of the specimens from Panama have bijugate leaves, while in the intervening countries the number of collections with two and three pairs are more or less equal; 2) Measurements of the basal angle of the leaflet show that the modal value in I. leptoloba is smaller than in I. punctata, but that the total ranges overlap and no clear trend is observable; 3) There is a group of specimens from the Atlantic lowlands of Nicaragua to Panama that have large legumes, comparable in size to those of I. latipes-possible relationship based on this and other characters between these two species remains obscure; 4) There are some local variants, such as the trees with small, very lustrous leaflets from Costa Rica (for instance, Dodge \& Thomas 6262), or the Panamanian "subspecies" described by Bentham and by Pittier; 5) Inga yunckeri of the Atlantic coast of Honduras seems to be very close to I. punctata, but at present no intergrading material is available; 6) Finally, the specimens from Mexico, including the type of I. leptoloba, seem to be the extreme in a line of variation and offer some marked characteristics, while at the other extreme of the geographic range (northern South America) the variability is more complicated, especially when some other doubtful species, such as I. strigillosa Benth., have to be considered. In this case it seems that although the herbarium methods show the convenience of reducing the different populations under one species, they also point the necessity of field studies, which eventually may change the position accepted here.
8. Inga yunckeri Standley, Publ. Field Mus. Nat. Hist., Bot. Ser., 9: 296, 1940. (Type Yunker, Koepper \& Wagner 8805)
Trees about 9 m tall; branchlets terete, striate, glabrous, lenticellate. Leaves with 2 pairs of leaflets; leaflets elliptic to ovate, the apex acute to acuminate, the base oblique, cuneate, above lustrous, glabrous, the nerves slightly prominent, beneath lustrous and glabrous, the lateral nerves and costa very prominent, the reticulate nervation conspicuous, the upper pair elliptic, $16-20 \mathrm{~cm}$ long, $6-10 \mathrm{~cm}$ wide, the basal pair ovate, about 9 cm long, 5 cm wide; rhachis terete, 2.5-7.5 cm long, glabrous, the glands small, cupuliform; petiole terete, $1.5-20 \mathrm{~cm}$ long, glabrous, the pulvinus thicker and darker. Inflorescences numerous, in short terminal branchlets; peduncle slender, $1.0-2.5 \mathrm{~cm}$ long, puberulous; rhachis $1-2$ cm long, pubescent, the bracts minute, caducous. Flowers sessile, congested; calyx tubular, 6-7 mm long, glabrous, striate, the teeth very short and obtuse; corolla tubular, spreading above, $10-12 \mathrm{~mm}$ long, densely sericeous, the lobes acute, about 1 mm long; staminal tube included, the free part of the filaments about 2 cm long. Legume unknown.

Atlantic lowlands of Honduras.
Honduras: atlantida: vic of La Ceiba, Yuncker et al. 8805 (F, MO).
This poorly known species is closely related to I. punctata from which it differs in the larger flowers and glabrous calyx and leaves. It is here maintained as a separate species owing to the lack of intergrading specimens, but it seems to be only an aberrant form of I. punctata.
9. Inga latipes Pittier, Contr. U. S. Nat. Herb. 18: 183, 1916. (Type Tonduz
13056)

Trees; branchlets angulate, glabrous. Leaves with 3 pairs of leaflets; leaflets ovate to elliptic, coriaceous, the apex obtuse to acuminate, the base cuneate to rounded, above lustrous, glabrous, the nerves slightly prominent, beneath paler, glabrous, the nerves very prominent, the upper pair elliptic, 8-11 cm long, 3-5 cm wide, the basal pair lanceolate to ovate, $3-4 \mathrm{~cm}$ long, $1.5-2.0 \mathrm{~cm}$ wide, the petiolule 2 mm long, sparsely pilose; rhachis terete or canaliculate above, $3-4 \mathrm{~cm}$ long, glabrous, the glands prominent, hemispheric, with a narrow apical pore; petiole terete, $1.0-1.5 \mathrm{~cm}$ long, glabrous, the pulvinus thick and darker. Inflorescences axillary, solitary; peduncle terete, about 1.5 cm long, glabrous; rhachis 2.0-2.5 cm long. Flowers unknown. Legume flat, oblong, the irregular shape due mostly to a lack of development of some seeds, $20-32 \mathrm{~cm}$ long, about 4 cm wide, blackish, glabrous, transversely striate, the borders elevated.

Costa Rica: cartago: Las Vueltas, Tucurrique, Tonduz 13056 (GH, NY, US).
This species is known only from fruiting specimens and its position among the gymnopodae where Pittier placed it is open to doubt. The general appearance of the plant recalls some forms of I. punctata, but its fruits are larger than any known from that species. However, there are several collections referred to the last species in which the legumes reach a size comparable to those of I. latipes. Such collections are: Standley 19361, from El Recreo, Dept Zelaya, Nicaragua; Standley 30720, from Guápiles, Prov Limón, Costa Rica; Barbour 1045, from Siquirres, Prov Limón, Costa Rica and G. P. Cooper 492, from Cricamola, Prov Bocas del Tora, Panama. All these collections are in fruit only, and the legumes exhibit a size unusual for I. punctata and the indument on the rhachis of leaves and branchlets is also denser than in the common forms of I. punctata. Only more complete material will clarify the problematic position of these collections and the relation, if any, between I. latipes and I. punctata. Although I. latipes was published by Pittier in 1916, it is interesting to note that he does not mention the species in his treatment of the Central American species of Inga published in 1929.
10. Inga martinicensis Presl, Symb. Bot. 1: 65, 1832. (Type Kohaut s.n., Sieber distr. 325)

Mimosa fagifolia Jacq., Select. Stirp. Amer. Hist. 264, 1763, non L. (ex char.)
M. sericea Poir. in Lam., Encycl. Suppl. 1: 42, 1810 (pro parte).

Trees, the trunk and branches frequently crooked; branchlets terete, fer-rugineous-tomentose to glabrescent, lenticellate. Leaves large, with 1-3 (generally 2) pairs of leaflets; leaflets coriaceous, elliptic, bullate, the apex acute, rounded or emarginate, the base acute to rounded, often asymmetric, above lustrous, pilose when young, in age glabrate, the 6-9 main nerves deeply impressed, giving a typical bullate appearance to the blade, beneath glabrous or sparsely pilose, mainly along the prominent nerves, the upper pair broadly elliptic, 9-16 cm long, $5-11 \mathrm{~cm}$
wide, the basal pair elliptic to ovate-elliptic, $5-12 \mathrm{~cm}$ long, $5-7 \mathrm{~cm}$ wide; rhachis terete or marginate, 3-7 cm long, tomentose or glabrous, the glands small, cupuliform, pertuse; petiole terete to angulate, $1.5-3.5 \mathrm{~cm}$ long, tomentose to glabrescent, the pulvinus terete and short; stipules ovate, acute, $1-3 \mathrm{~mm}$ long, glabrous or tomentose, caducous. Inflorescences axillary, solitary; peduncle terete, $1.5-2.0 \mathrm{~cm}$ long, pubescent; rhachis $3-6 \mathrm{~cm}$ long, tomentose the bracts linear, 1.5 mm long, tomentose, caducous. Flowers sessile, congested; calyx campanulate $3.5-5.0 \mathrm{~mm}$ long, sericeous, the teeth irregular sometimes up to 2 mm long, often shorter, corolla funnelform, $7.0-8.5 \mathrm{~mm}$ long, sericeous, the lobes acute 2 mm long; staminal tube included, the free part of the filaments about 12 mm long; ovary pubescent. Legume flat, oblong, straight or slightly curved, mucronate, $10-15 \mathrm{~cm}$ long, 2.0-2.5 cm wide, about 0.5 cm thick, densely ferrugineous-pubescent when young, in age glabrate, the borders elevated.

Highland forests and savannas of Martinique and Guadaloupe.
Vernacular name: pois-doux montagne (Martinique-Duss).
Guadeloupe: savanes aux Ananas, morne du Motelayne, Duss 3230 (NY, US).
Martinique: Citame, Stehlé 1391 (NY); Pitons de Carbet, Duss 1155 (NY), Stehlé 2177 (NY), Stehlé 2392 (US); without locality, Kohaut s. n., Sieber distr. 325 (GH, MO).

Presl based his description of I. martinicensis on the Kohaut collection that Sieber distributed under the name of Mimosa coriacea. It is frequently confused with I. coruscans H.B.K., a species of South and Central America, and Grisebach refers to I. martinicensis the type collection of I. dominicensis Benth., a very distinct species.

The description of I. fagifolia Jacq. (non L.) agrees in general with the characters of I. martinicensis, and the crude illustration in Stirp. Amer. Hist. t. 164 undoubtedly represents this species. The plate shows, for instance, a leaf with only one pair of leaflets, a striking character that occurs sometimes in I. martinicensis. Poiret based his description of Mimosa sericea partially on Jacquin, and took the rest from the original description of I. punctata Willd.

Inga martinicensis seems to be related to I. punctata, a species that occurs in the West Indies only in Trinidad and Tobago.
11. Inga brevipedicellata Harms in Fedde, Rep. Sp. Nov. 19: 62, 1924, (ex char.; Type J. A. Purpus 282, not seen)

Trees; branchlets terete, glabrous, sparsely lenticellate, in age whitish and with a soft bark. Leaves with 3 pairs of leaflets; leaflets shortly petiolulate, oblong to oblong-obovate, the apex acute to long acuminate, the acumen up to 2 cm long, ending in a short and strong mucro, the base generally acute, rarely obtuse, above dark green, lustrous and glabrous, the nerves impressed, beneath sparsely pilose to glabrous, the 12-14 pairs of lateral nerves prominent with alternate and shorter ones between, the upper pair oblong, $11-18 \mathrm{~cm}$ long, $5-7 \mathrm{~cm}$ wide, the lower pairs oblong to oblong-obovate, the lowermost $6-9 \mathrm{~cm}$ long, $3-4 \mathrm{~cm}$ wide; the petiolules $2-4 \mathrm{~mm}$ long; rhachis narrowly marginate, $1.5-6.5 \mathrm{~cm}$ long, glabrous, the glands small, disciform, sometimes obsoleie; petiole terete, $2.5-3.5 \mathrm{~cm}$ long,
striate, the pulvinar section conic and darker; stipules oblanceolate, 9-11 mm long, striate, pubescent, caducous. Inflorescences solitary or in groups of 2-3, fascicled below the new growth; peduncle slender, $4-7 \mathrm{~cm}$ long, striate, pilose; rhachis $1.5-2.5 \mathrm{~cm}$ long. Flowers dense, the lower with thin, pilosulose pedicels up to 2 mm long, the upper almost sessile; calyx tubular-funnelform, 2.5-3.0 mm long, sparsely pilose, more densely pilose at the base and tips, the teeth obtuse about 1.5 mm long; corolla tubular-funnelform, 6 mm long, appressed-pilose, the lobes $1.0-1.5 \mathrm{~mm}$ long; staminal tube included, the filaments up to 1.5 cm long. Legume flat, oblong, $18-22 \mathrm{~cm}$ long, $4-5 \mathrm{~cm}$ wide, less than 1 cm thick, transversely striate when young, glabrous, the borders elevated.

Highlands of Veracruz.

Abstract

Mexico: veracruz: Mirador, C. A. Purpus 10702 (NY, US), 10884 (US), 16007 (US); Zacualpán, C. A. Purpus 8169 (GH, MO, NY, US), 8394 (GH, MO, NY, US), 8400 (GH, MO, NY, US), 10106 (F).

The species is noteworthy for its shortly pedicellate flowers and large fruits. In some characters there is a striking similarity between this species and I. jinicuil, especially in the shape and size of the leaflets and fruits, in the oblanceolate stipules and the structure of the bark in the oldest branchlets. In fact, the specimens in fruit are very difficult to differentiate. Their area of distribution is also more or less the same. In the general appearance of the inflorescences I. brevipedicellata looks like I. punctata, with which it is often confused in herbaria.

As far as known this species is restricted to one highland of Veracruz, where it is commonly planted as a shade tree in the coffee fields. The type from Mirador, was not available, and comes from a cultivated tree.

12. Inga dominicensis Benth., Trans. Linn. Soc. 30: 612, 1875. (Type Imray 336)

Trees, branchlets terete or angulate, puberulous to glabrous, markedly lenticellate. Leaves small with 2-3 pairs of leaflets; leaflets coriaceous, ovatelanceolate to elliptic, the apex acute, the base acute to rounded, above lustrous, glabrous, the distant nerves slightly prominent, beneath dull, sparsely pilose when young, in age glabrate, the nerves prominent, the upper pair ovate-lanceolate, 8 -10 cm long, 2.5-5.0 cm wide, the basal pair elliptic, $4-6 \mathrm{~cm}$ long, $2-3 \mathrm{~cm}$ wide; rhachis slightly marginate, $1-2 \mathrm{~cm}$ long, glabrous, the glands minute, cupuliform, pertuse; petiole terete, the pulvinar section thicker, $1.0-1.5 \mathrm{~cm}$ long. Inflorescences solitary and axillary; peduncle slender, puberulous, about 1 cm long; rhachis angulate, $2-3 \mathrm{~cm}$ long, puberulous, the bracts triangular, less than 0.5 mm long. Flowers shortly pedicellate; calyx campanulate, about 3 mm long, strigillose, the teeth obtuse and inconspicuous; corolla funnelform, about 5 mm long, pilose, the lobes acute, $1.5-2.0 \mathrm{~mm}$ long; staminal tube included. Legume unknown.

Highland forests of Dominica.
Dominica: without locality, Imray 336 (GH, K).
Bentham separated the Imray collection from I. martinicensis, where Grisebach (Fl. Br. W. Ind. 227, 1861) had put it, on the basis of foliar and floral characters:
the leaflets in I. dominicensis have narrow, acuminate apices while in I. martinicensis they are obtuse to rounded; the flowers in the first species are shortly pedicellate, in the second sessile or almost so. These two species seem to come from a common stock of South American origin, but probably have undergone a long isolation, not only from each other but also from the species of the mainland, since the area from Guadeloupe to Martinique is geologically the oldest in the Lesser Antilles.
13. Inga pinetorum Pittier, Contr. U. S. Nat. Herb. 18: 185, 1916. (Type Peck 343)

Small trees; branchlets terete, lenticellate, densely ferrugineous-hispid to glabrescent. Leaves with 2, rarely 3, pairs of leaflets; leaflets elliptic to obovate, often oblique, the apex rounded, acute or shortly acuminate, the base cuneate and frequently asymmetric, above dark, lustrous, pilose especially along the nerves and margin, or glabrescent, beneath more densely ferrugineous-pilose, the nerves prominent and more pubescent, the upper pair obovate, $6-15 \mathrm{~cm}$ long, 3-7 cm wide, the basal pair elliptic to rhombic, $4-10 \mathrm{~cm}$ long, $2-4 \mathrm{~cm}$ wide, the petiolules terete, pilose, 2-3 mm long; rhachis terete, $2-4 \mathrm{~cm}$ long, hispidulous, the glands stipitate, urceolate, 1 mm in diam, glabrous; petiole terete, $1.0-2.5 \mathrm{~cm}$ long, densely ferrugineous-hispidulous, stipules triangular, $3-4 \mathrm{~mm}$ long, about 2 mm wide, glabrescent, persistent. Inflorescences axillary, solitary or in groups of 2-3; peduncle slender, 2.5-7.0 cm long, densely ferrugineous-pilose; rhachis $1-2 \mathrm{~cm}$ long, pilose, the bracts triangular, 1.5 mm long, pubescent, caducous. Flowers sessile to shortly stipitate; calyx tubular, sometimes deeply cleft on one side, 5 mm long, hispidulous to glabrescent, the teeth acute, $0.5-1.5 \mathrm{~mm}$ long; corolla tubular, spreading above, $10-11 \mathrm{~mm}$ long, densely hispid, the lobes acute, $1-3 \mathrm{~mm}$ long; staminal tube exserted. Legume (immature) flat, oblong, up to 7 cm long, 2.5 cm wide, densely fulvous-hispidulous when young, in age glabrate.

Lowlands of Mexico and British Honduras in dry forests; frequent in the pine formations close to the sea.

Vernacular name: tama-tama (British Honduras).
Mexico: tabasco: Achotal, Balancán, Matuda 3098 (F, NY); Chiltepec, Rovirosa 738 (K, US). veracruz: Coatzacoalcos, C. L. Smith 986 (EAP, US).

British Honduras: All Pines, Schipp 767 (F, GH, MO, NY); Manatee Lagoon, Peck 343 (GH); Monkey River, Gentle 4149 (MO, NY, US); Mountain Pine Ridge, Bartlett 13086 (NY, US), Lundell 6747 (F, GH, NY, US).

This species differs from others in the series punctatae in its dense and ferrugineous pubescence found upon all parts of the plant. It is closely related to I. punctata, although it is easily separated from this species by the longer flowers and the type of pubescence. Inga pinetorum is found often on the dunes close to the sea.

Series 2. multijugae J. León, ser. nov.
Arbor vel frutex; ramuli glabri vel puberuli. Folia foliolorum paribus 4-10; rhachis teres glandulis patelliformibus. Inflorescentiae in lignum vetum axillares,
in ramis juventibus paniculatae; calyx tubularis; corolla tubularis pilosa. Legumina plana marginibus elevatis.

Trees or shrubs; branchlets glabrous or shortly pubescent. Leaves with 4-10 pairs of leaflets, very variable in size and shape, glabrous or sparsely pubescent; rhachis terete, the glands patelliform. Inflorescences axillary in the old wood or paniculate in the new growth; calyx tubular, short or long, cleft in one species; corolla tubular, pilose. Legume flat, less than 20 cm long, the margins elevated.

Type species: I. multijuga Benth.
This series is formed, with one exception, of species of wide distribution and variability.
species . . . 14-17
a. Corolla more than 10 mm long; upper leaflets oblong to lanceolate.
b. Flowers congested; foliar rhachis $9-20 \mathrm{~cm}$ long; calyx regular.
c. Calyx $12-22 \mathrm{~mm}$ long; 5-10 pairs of leaflets; leaflets apex obtuse to acuminate ...14. I. multijuga
cc. Calyx $3-4 \mathrm{~mm}$ long; $4-7$ pairs of leaflets; leaflets acute at the apex
15. I. thibaudiana
bb. Flowers distant; foliar rhachis $4-9 \mathrm{~cm}$ long; calyx often cleft on two

aa. Corolla less than 10 mm long; upper leaflets obovate17. I. ruiziana
14. Inga multijuga Benth., Trans. Linn. Soc. 30: 615, 1875. (Type Hayes 645)

Inga aestuarium Pittier, Contr. U. S. Nat. Herb. 18: 183, 1916. (Type Tonduz 6793)
Small trees with low branching; branchlets terete, densely ferrugineous-tomentose when young, in age glabrate and lenticellate. Leaves with 5-10 pairs of leaflets; leaflets oblong to lanceolate, generally oblique, the apex rounded or obtuse to acuminate, with a short mucro, the base obtuse to rounded, often asymmetric, above lustrous, sparsely pilose to glabrous, densely pilose along the margins and costa, the nerves slightly impressed, beneath paler, densely ferrugineous-pilose, the nerves prominent, the upper pair lanceolate-elliptic, rarely oblong, $7-14 \mathrm{~cm}$ long, $3-5 \mathrm{~cm}$ wide, the basal pair lanceolate, $2.5-9.0 \mathrm{~cm}$ long, $1.0-4.5 \mathrm{~cm}$ wide, the petiolule terete, up to 3 mm long, pubescent; rhachis terete, marginate or slightly winged in the upper interfoliolar sections, $9-20 \mathrm{~cm}$ long, densely ferrugineoustomentose, the glands patelliform, glabrous, the rim elevated and paler than the pore; petiole terete, slightly thicker at the pulvinar section, $1.5-2.5 \mathrm{~cm}$ long, densely ferrugineous-tomentose; stipules minute, ovate, about 3 mm long, caducous. Inflorescences axillary or terminal, solitary or geminate in the axils, or several in short terminal branchlets; peduncle terete, $1.5-5.5 \mathrm{~cm}$ long, densely tomentose; rhachis $1.5-2.0 \mathrm{~cm}$ long, the bracts minute, triangular, about 1 mm long, pubescent, caducous. Flowers sessile, in rather loose spikes; calyx tubular, $7-10 \mathrm{~mm}$ long, striate, densely ferrugineous-tomentose, the teeth less than 1 mm long, acute, regular; corolla tubular, spreading above, $12-22 \mathrm{~mm}$ long, sericeous, the lobes about 2.5 mm long; ovary flat, glabrous. Legume flat, oblong, straight or curved, $15-19 \mathrm{~cm}$ long, $1.5-3.0 \mathrm{~cm}$ wide, transversely striate, densely tomentose when young, in age glabrate, the borders elevated.

Lowlands of Costa Rica and Panama; often growing along the coasts and estuaries.

Vernacular name: guabo de estero (Costa Rica-Pittier).
Costa Rica: puntarenas: Boca Zacate, Río Térraba, Tonduz 6793 (CR, US); Isla del Caño, Holdridge s. n. (IAIAS); Playa Blanca, Osa, M. Valerio 469 (CR, F); Puerto Jiménez, Brenes 12164a (F); Río de Jesús María, Esparta, León 3505 (IAIAS).

Panama: canal zone: Barro Colorado Island, Bangham 533 (F); Chagres, Fendler 51 (GH, MO, US); Fort Sherman, Standley 30958 (US); Gatun Lake, Nielsen 100 (MO), 101 (MO), 115 (MO), 118 (MO); Lion Hill Station, Hayes 645 (F, K); Margarita Swamp, Maxon \mathcal{G} Valentine 7058 (US); without locality, Epplesheimer s. n. (F). veraguas: Isla de Coiba, Méndez 146 (US).

Within its restricted geographic area, I. multijuga offers a morphological variability such as few species in this genus. In the same tree the new growth produces leaves with 8-10 pairs of narrowly elliptic, thin leaflets, and solitary or geminate inflorescences with long calyces, while in the older branchlets the elliptic-lanceolate, subcoriaceous leaflets are arranged in 7-8 pairs and the inflorescences are numerous, terminal and with short calyces. Great variability is found also in different parts: the calyx length ranges from $4-10 \mathrm{~mm}$ long; the rhachis varies from terete to clearly winged; and in the leaflets the variability is reflected both in their number per leaf and in the shape, which varies at the apex from obtuse and mucronate to acute and long-acuminate. Small wonder, then, that Pittier attributed Fendler 51 at GH to I. ruiziana G. Don, while the same number at MO and US was determined as I. multijuga. The Nielsen collections permit establishing a neat relation between the two types of growth.

Inga aestuarium Pittier may be included under I. multijuga perhaps as a subspecific variant. The plants under that name are small trees, which grow mainly on the borders of the sea and estuaries in the Pacific coast of Costa Rica, with fewer pairs of leaflets than is typical of I. multijuga. A specimen from Coiba Island, Mendez 146, seems intermediate between the Costa Rican and the other Panamanian specimens.

Inga brunnescens Britton \& Killip (Type Mutis 3523) of central Colombia is very close to Fendler $51(\mathrm{GH})$ and is probably another variant of I. multijuga.
15. Inga thibaudiana DC., Mém. Leg. 12: 439, 1825. (Type Thibaud s.n. photo)
I. gladiata Desv., Ann. Sc. Nat., sèr. 1, 9: 427, 1826 (fide Bentham).
I. tenuiflora Salzm. ex Benth. in Hook., Lond. Jour. Bot. 4:596, 1845. (Type Salzmann s.n.).
I. macradenia Mart. ex Benth., Trans. Linn. Soc. 30: 615, 1875 (fide Bentham).
I. recordii Britton \& Rose ex Standley, Trop. Woods 7:5, 1929. (Type Record 40).

Medium to large trees; branchlets terete, lenticellate, densely ferrugineouspubescent, striate. Leaves with 4-7 (generally 5-6) pairs of leaflets; leaflets very variable in shape and size, strongly asymmetric, elliptic to oblanceolate, the apex acute to long-acuminate, the acumen often asymmetric, the base cuneate or rounded, oblique, above lustrous, sparsely pilose except along the nerves and margins where the pubescence is thicker, the nerves slightly prominent, beneath dull, closely pilose, the nerves prominent, the upper pair lanceolate or elliptic-lanceolate to oblanceolate, $7-15 \mathrm{~cm}$ long, $3-6 \mathrm{~cm}$ wide, lower pairs lanceolate to elliptic-lanceolate, strongly unequal, the upper half tapering abruptly towards the tip, the lower-
most pair $3-5 \mathrm{~cm}$ long, $1-3 \mathrm{~cm}$ wide; rhachis terete, sometimes winged in the upper interfoliolar sections, $8-18 \mathrm{~cm}$ long, often ending in a linear appendix about 4 mm long, densely tomentose, the glands urceolate to scutellate, up to 2 mm in diam; petiole terete, $1-2 \mathrm{~cm}$ long, densely tomentose, the pulvinus conic and thicker. Inflorescences axillary, solitary or in groups of $2-4$; peduncle $3-4 \mathrm{~cm}$ long, densely tomentose; rhachis $1.5-3.5 \mathrm{~cm}$ long, the bracts small, spathulate, about 1 mm long, thick and pubescent in the back. Flowers sessile, in compact spikes; calyx tubular, 3-4 mm long, tomentose, the teeth minute and irregular; corolla tubular, 16-20 mm long, sericeous-villose, the lobes acute, up to 3 mm long; staminal tube included. Legume flat, rounded at the ends, apiculate, $6-18 \mathrm{~cm}$ long, about 2 cm wide, gray or ferrugineous-pubescent, the borders elevated.

Lowlands from British Honduras to Panama; Trinidad. (South America.)
Vernacular names: tama tama, mountain bribri (British Honduras).
British Honduras: Big Creek, Schipp 19 (F, GH, MO, NY, US); Middlessex, Hope 111 (F), Schipp 385 (F, GH, MO, NY) ; Monkey River, Toledo District, Gentle 3691 (MO, NY), 3959 (MO, NY, US); Pine Ridge, Bartlett 11683 (GH, NY, US); Silk Grass Forest, Burns 25 (F, NY, US), Gentle 2988 (NY); Temash River, Schipp 1363 (F, GH, MO, NY, US) ; without locality, Peck 496 (GH, K).

Guatemala: alta verapaz: Gubilgüitz, Tuerckheim 4090 (NY, US); Sepacuité, Cook \& Griggs 641 (US), 729 (US), 734 (US); Yaxcabnal, Gubilgüitz, Steyermark 45095 (F). izabal: Bananera to La Presa, Steyermark 38108 (F); Cerro San Gil, Steyermark 39480 (F); Livingston, C. L. Wilson 361 (F); Los Andes to Entrerrios, Record 40 (GH, US); Puerto Barrios, Standley 73046 (F); valley of Motagua, Steyermark 38985 (F); Virginia to Lago Izabal, Steyermark 38844 (F). without locality: Lewton 418 (US).

Honduras: colon: Guarunta, von Hagen 1345 (F, NY).
Costa Rica: cartago: Moravia, Turrialba, Córdoba 331 (IAIAS). san jose: El General, Dayton \& Barbour 3128 (US), Skutch 2518 (MO, NY), 4232 (MO, NY, US).

Panama: canal zone: Barro Colorado Island, Shattuck 1122 (F), Zetek 3834 (F); Frijoles, Standley 27581 (US), 27588 (US), Stevens 1272 (ILL).

Trinidad: Aripo road, Broadway 5789 (MO); Caroni, Eggers 1383 (US); Dibe valley, Britton \& Coker 1756 (GH, US) ; Maraval, Britton \& Hazen 1593 (GH), Hart 5818 (US); Sangre Grande, R. O. Williams 11853 (US). without locality: Trinidad Bot. Gard. Herb. 2841 (US).

This species is remarkable for the variability in the shape of the leaflets even of trees growing side by side, to which attention has been called by the collectors in Brazil, the Guianas and British Honduras. Herbarium specimens of I. thibaudiana are very often identified as I. multijuga Benth., a related Central American species.
16. Inga skutchir Standley, Publ. Field Mus. Nat. Hist., Bot. Ser., 23: 11, 1943. (Type Skutch 4823)

Trees about 9 m tall; branchlets terete, densely ferrugineous-tomentose to glabrescent. Leaves with $6-8$ pairs of leaflets; leaflets elliptic to ovate, the apex obtuse, ending in a short, pilose mucro, the base obtuse to rounded, above glabrous except along the costa, the nerves slightly marked, the margin undulate and sparsely pilose, beneath paler, very sparsely pilose, the nerves prominent, the upper pair elliptic, $4-7 \mathrm{~cm}$ long, $1-2 \mathrm{~cm}$ wide, the basal pair lanceolate, $2-3 \mathrm{~cm}$ long, $1.0-1.5 \mathrm{~cm}$ wide, the petiolule about 1 mm long, densely pilose; rhachis terete,
slender, $4-9 \mathrm{~cm}$ long, densely yellow-pilose, the glands small, hemispheric, about 0.5 mm in diam, pertuse and glabrous at the apex; petiole terete, 1 cm long, densely pilose, the pulvinus conic; stipules lanceolate, 2 mm long, pilose. Inflorescences 1-3, axillary; peduncle slender, terete, $3-4 \mathrm{~cm}$ long, tomentose; rhachis $5-7 \mathrm{~cm}$ long, the bracts minute, lanceolate, about 3 mm long, pubescent, persistent. Flowers sessile or shortly pedicellate, distant, irregularly arranged on the rhachis; calyx tubular, cleft on two sides, $5-6 \mathrm{~mm}$ long, striate, sparsely pilose, the teeth irregular, minute, more pilose; corolla tubular-funnelform, $15-18 \mathrm{~mm}$ long, ap-pressed-pilose, the lobes acute, 2 mm long; staminal tube included, the filaments about 1.5 cm long. Legume unknown.

Forests of western Costa Rica.
Costa Rica: san jose: basin of El General, Skutch 4823 (CR, F, MO).
Noteworthy for the slender rhachises, both in the leaves and in the inflorescences and for the very distant flowers; it is close to the Panamanian I. multijuga and its Costa Rican variant, I. aestuarium, from which it differs in the loose inflorescence and deeply cleft calyx.

17. Inga ruiziana G. Don, Gen. Hist. Dichl. Pl. 2: 391, 1832. (Type Ruiz 5)

I. fagifolia G. Don, loc. cit., non Willd. (fide Bentham).
I. foliosa Benth. in Hook., Lond. Jour. Bot. 4: 597, 1845 (fide Bentham). Feuilleea ruiziana (G. Don) O. Ktze., Rev. Gen. Pl. 1: 189, 1891.
Inga confusa Britton \& Rose, N. Amer. Flora 23: 5, 1928. (Type Pittier 5533)
Trees up to 25 m tall; branchlets terete, lenticellate; with minute, appressed and ferrugineous pubescence. Leaves with 4-8 (generally 6-7) pairs of leaflets; leaflets obovate to ovate, sometimes asymmetric, the apex acute or acuminate, often ending in a short and strong mucro, the base acute, oblique or rounded, above slightly pilose to glabrous, the nerves impressed, beneath puberulent, the nerves reticulate and prominent, the upper pair obovate-elliptic, $15-34 \mathrm{~cm}$ long, $5-12 \mathrm{~cm}$ broad at the wider section, lower leaflets elliptic to ovate, the basal pair $3-6 \mathrm{~cm}$ long, $3-4 \mathrm{~cm}$ wide; rhachis angulate, sometimes marginate in the upper sections, $8-28 \mathrm{~cm}$ long, ferrugineous-puberulent, the glands sessile, patelliform, $1-2 \mathrm{~mm}$ in diam; petiole terete, $1-2 \mathrm{~cm}$ long, densely ferrugineous-puberulent, the pulvinus short and thick; stipules lanceolate, up to 5 mm long, ferrugineous-pubescent, caducous. Inflorescences axillary on the old wood or paniculate on the new growth, in numerous clusters of $2-4$ spikes each, peduncle slender, $2.5-4.0 \mathrm{~cm}$ long, densely ferrugineous-pubescent; rhachis $1.0-1.5 \mathrm{~cm}$ long, the bracts linear, acute, 1.5 mm long. Flowers sessile, appressed; calyx subturbinate, $3-5 \mathrm{~mm}$ long, sparsely pilose, the teeth acute and small; corolla tubular, $7-9 \mathrm{~mm}$ long, strigose, the lobes acute, somewhat spreading, $1.0-1.5 \mathrm{~mm}$ long; staminal tube included, the filaments about 1 cm long. Legume flat, oblong, slightly curved, $8-16 \mathrm{~cm}$ long, $2-4 \mathrm{~cm}$ wide, woody, the margins elevated.

Wet lowlands of Nicaragua to Panama. (Colombia to Peru and Brazil.)
Nicaragua: chontales: Castillo Viejo, Shimek \& Smith 535 (EAP). san juan del norte: San Juan del Norte, C. L. Smith 7 (EAP, GH, MO).

Costa Rica: cartago: Atirro, León 3962 (IAIAS); Instituto de Ciencias Agrícolas, Córdoba 89 (IAIAS), Holdridge 2560 (IAIAS), León 1828 (IAIAS); Juan Viñas, Cook \& Doyle 391 (US); Las Vueltas, Tucurrique, Tonduz 13054 (CR, GH, K, NY, US); Pejivalle, Skutch 4607 (CR, F, MO, NY, US) ; Santa Rosa, Turrialba, León 1520 (EAP, IAIAS); Tuis, Córdoba 135 (IAIAS, MO). Limon: Limón, Tonduz 9801 (CR, US); Río Hondo, Pittier 16646 (US); Shirores, Tonduz 9356 (CR). puntarenas: Río Esquinas, Allen 5842 (EAP). sAN JOSE: El General, Skutch 2895 (GH, MO, NY, US), 3834 (MO, NY, US).

Panama: bocas del toro: Chiriquí Lagoon, Punta Rovalo, Seibert 1558 (MO); Old Bank Island, von Wedel 2012 (GH, MO); Shepherd Island, von Wedel 2677 (GH, MO); Water Valley, von Wedel 844 (GH, MO). canal zone: Barro Colorado Island, Avilés 70 (F), 112 (F), Brown 95 (F), Bangham 516 (F), Shattuck 468 (F), C. L. Wilson 4 (F), Zetek 3826 (F), 3839 (F); Gamboa, Pittier 6520 (GH, NY, US); Masambi, Pittier 2674 (GH, NY, US); Obispo, Standley 31678 (US), 31690 (US); Quebrada Salamanca, Dodge, Steyermark \& Allen s. n. (MO). colon: Río Fató, Pittier 3917 (NY, US). darien: Marragantí R. S. Williams 768 (NY); Río Sambú, Pittier 5533 (GH, NY, US).

A species which is well marked by its obovate upper leaflets and congested inflorescences generally at the end of new growth. There is no apparent reason to segregate the Central American trees into a different species as was done by Britton \& Rose.

Planted often in Costa Rica and Panama as shade trees in the lower coffee belt or in the cacao grove at below 600 m elevation.

Series 3. densiflorae J. León, ser. nov.
Arbor; ramuli teretes vel angulati. Folia foliolis generaliter 4 minusve; rhachis plerumque alata; petiolus curtus. Inflorescentiae 1-4; pedunculus rhachisque curta bracteis linearibus vel lanceolatis. Flores sessiles congesti. Legumina plana marginibus laete elevatis.

Trees; branchlets terete or angulate, generally pubescent. Leaves with a low number of pairs of leaflets, generally 4 or less; leaflets pubescent to glabrous, thin, flat; rhachis commonly winged, but extremely variable even in the same species, often marginate; petiole short, winged or terete. Inflorescences 1-4, axillary or terminal, in one case on the old wood; peduncles short, stout or filiform; rhachis short, the bracts linear to lanceolate. Flowers sessile, congested; calyx short, tubular, pilose; corolla tubular, appressed-pilose. Legume flat, quite variable in size, the margins slightly elevated, sparsely pilose to glabrescent.

Type species: I. densiflora Benth.
Species of the series densiflorae are characterized by large, thin leaves with few pairs of leaflets and large, flat legumes. Its center of variation occurs in northern South America on the two sides of the Andes (see under I. densiflora). The Central American species form a highly complex unit, in which I. schiedeana, I. micheliana and I. davidsoniae may be only variants of I. densiflora. On the other hand there are several endemics with no clear relationships, such as I. stenophylla, I. barbourii, I. hintoni.

The densiflorae form a connection between the punctatae and the other series of this section. \quad sPecies . . . 18-27
a. Branchlets, leaves and legumes sparsely pilose to glabrous.
b. Peduncle stout, pubescent or glabrous; leaves large, the upper leaflet more than 3 cm wide.
c. Branchlets, leaves and peduncles pilose or pubescent; legume pilose or glabrous.
d. Leaflets $4-6$ pairs; corolla $5-8 \mathrm{~mm}$ long. e. Bracts linear lanceolate, $3-4 \mathrm{~mm}$ long. Panama, Costa Rica
18. I. densiflora
ee. Bracts linear, $4-9 \mathrm{~mm}$ long. Mexico
..19. I. schiedeana
dd. Leaflets 3 pairs; corolla 9 mm long. Guatemala20. I. micheliana
cc. Branchlets, leaves and peduncles glabrous; legume glabrous or covered with scales.
f. Leaves thin, 5-6 pairs of leaflets; upper pair 11-14 cm long; legume white-lenticellate. Costa Rica21. I. sQU
ff. Leaves coriaceous; 4 pairs of leaflets; upper pair 8 cm long; legume sparsely pilose. Panama22. I. davidsoniae
bb . Peduncles filiform, sparsely pilose to glabrous; leaves small, the upper pair less than 3 cm wide.
g. Upper leaflets oblong-lanceolate to falciform, $1.0-1.5 \mathrm{~cm}$ wide, acute at the apex; rhachis terete to marginate. Costa Rica23. I. stenophylla
gg. Upper leaflets elliptic to oblong, $2-3 \mathrm{~cm}$ wide, clearly mucronate; rhacis marginate to broadly winged.
h. Inflorescences in short spurs; corolla 6-7 mm long; leaflets glossy. Mexico
24. I. TENUIPEDUNCULATA
hh. Inflorescences axillary; corolla less than 4 mm long; leaflets
opaque. Costa Rica ...25. I. barbourii
aa. Branchlets, leaves and legumes densely ferrugineous pilose.
i. Calyx $3-5 \mathrm{~mm}$ long; leaves bullate. Legume thin. Mexico26. I. hintoni
ii. Calyx 7-9 mm long; leaves flat; legume thick. El Salvador-Mexico
27. I. Calderoni
18. Inga densiflora Benth., Trans. Linn. Soc. 30: 617, 1875. (Type Spruce 4504)
I. langlassei Pittier, Contr. U. S. Nat. Herb. 18: 189, 1916. (Type Langlassé 63)
I. mollifoliola Pittier, loc. cit. (Type Pittier 3251)
I. monticola Pittier, loc. cit. 190. (Type R. S. Williams 316)
I. sordida Pittier, loc. cit. 191. (Type Lehmann 904)
I. montealegrei Standley, Publ. Field Mus. Nat. Hist., Bot. Ser., 18: 1154, 1938. (Type Montealegre 1)

Trees; branchlets terete, striate, densely yellow-tomentose when young, in age glabrate and lenticellate. Leaves with 4-6 (generally 4) pairs of leaflets; leaflets asymmetric, oblong to obovate, the apex acute to acuminate, sometimes mucronate, the base oblique, acute to rounded, above lustrous or dull, sparsely pilose to glabrous, the nerves prominent and more pubescent, beneath paler, densely to sparsely pilose, the nerves prominent with conspicuous reticulate nervation, the upper pair elliptic to obovate-elliptic, $7-18 \mathrm{~cm}$ long, $3.5-7.0 \mathrm{~cm}$ wide, the basal pair lanceolate-elliptic, $2.5-4.0 \mathrm{~cm}$ long, 1.5 cm wide, the petiolule very short, 1 mm long, pilose; rhachis marginate to slightly winged above, terete below, 5-10 cm long, yellow-pilose, especially on the midnerve, ending in a linear and pilose appendix, the glands patelliform, black, $1.5-2.0 \mathrm{~mm}$ in diam; petiole terete or marginate above, $1-2 \mathrm{~cm}$ long, densely yellow-pilose, the pulvinus conic, fleshy and black; stipules subulate, 2-5 mm long, striate, caducous. Inflorescences axillary, $2-4$; peduncle terete, $4-6 \mathrm{~cm}$ long, striate, pilose; rhachis short, $1-3 \mathrm{~cm}$ long, the bracts linear-lanceolate, 3-4 mm long, pilose, semi-persistent. Flowers congested,
sessile; calyx tubular, $2.5-5.0 \mathrm{~mm}$ long, sparsely pilose to glabrate above, densely pilose at the base, the teeth small, irregular, $1.0-1.5 \mathrm{~mm}$ long; corolla tubular, widening towards the apex, $6.5-9.0 \mathrm{~mm}$ long, appressed-pilose, the lobes acute, about 1 mm long; staminal tube included. Legume flat, oblong, $8-22 \mathrm{~cm}$ long, 3-8 cm wide, finely pilose when young, in age glabrate, transversely striate, the borders elevated.

Costa Rica to Panama. (Northern South America.)

Costa Rica: alajuela: La Palma, San Ramón, Brenes 6805 (CR, F, IAIAS), 19001 (CR, F); La Paz, San Ramón, Córdoba 180 (IAIAS); Palmares, Córdoba 190 (IAIAS); Piedades, San Ramón, Brenes 5459 (CR, F, IAIAS), 5469 (CR, F), 5842 (CR, F); San Isidro, San Ramón, Córdoba 182 (IAIAS), 183 (IAIAS), 184 (IAIAS), 185 (IAIAS); San Miguel a La Palma, San Ramón, Brenes 17049 (CR, F); San Pedro, San Ramón, Brenes 4341 (CR, F), 4673 (CR, F), 4676 (F), 4826 (F), 4843 (F), 5002 (F), 6634 (CR, F), 19456 (CR, F, IAIAS), 19479 (CR); San Ramón, Córdoba 181 (IAIAS); Santiago, San Ramón, Brenes 17186 (CR, F). cartago: Atirro, León 1921 (IAIAS); Instituto de Ciencias Agrícolas, Córdoba 91 (IAIAS), Holdridge 2550 (IAIAS), León 1850 (EAP, IAIAS); Santa Rosa, Turrialba, León 2448 (EAP, IAIAS). san jose: Pavas, Montealegre 1 (CR, F), 2 (CR, F); Rodeo de Pacaca, Pittier 3251 (CR, US); San Marcos de Dota, Tonduz 7548 (CR).

Panama: cocle: Bismarck, above Penonomé, R. S. Williams 316 (US). san blas: Permé, G. P. Cooper 651 (F, NY, US).

Inga densiflora is one of the most variable species in the genus. In Costa Rica it is very commonly planted as a shade tree in the coffee fields of the highlands; the populations in that area are distinguished by the dense tomentum and short leaflets. The type most common in the coffee fields (I. montealegrei) has more glabrous and larger leaflets. The populations are so variable that they are assigned different specific names in the herbaria. The numerous collections made by Brenes, and large local samples taken by the author, show all sort of intergradations among these populations (i.e., broadly winged to slightly marginate rhachises, etc.). In the present treatment, two species of northern Central America are maintained because of the lack of intergrading materials. But it is possible that future collections may prove that I. micheliana, I. schiedeana and the Panamanian species I. davidsoniae are only aberrant populations of I. densiflora.

It is necessary to point out that I. densiflora has a series of more complex populations in northern South America. In Colombia they receive several names: I. sordida Pittier, I. langlassei Pittier, I. microdontha Britton \& Killip, I. tiribiana Britton \& Killip, etc. All of them show a remarkable similarity among themselves and with the type specimen of I. densiflora at Kew. In Venezuela I. heinei Harms and I. limonensis Pittier also belong to the group mentioned above, while I. java Pittier, as noted by Schery (Ann. Missouri Bot. Gard. 37: 196, 1950), is similar to many Central American specimens. Types of the above taxa were studied.

[^1]I. flexuosa Schlecht., Linnaea 12: 559, 1838, non Graham. (Type Schiede 674)
I. pringlei Harms in Fedde, Rep. Sp. Nov. 13: 526, 1915. (Type Pringle 8125)

Small trees; branchlets terete or angulate, densely ferrugineous-puberulent when young, in age glabrate and lenticellate. Leaves with 4-6 (generally 5) pairs of leaflets; leaflets oblique, obovate-elliptic to lanceolate, the apex acute to acuminate, the base cuneate to rounded, often asymmetric, above opaque to sublustrous, sparsely pubescent and more densely on the costa and margin, the nerves prominent, beneath paler, sparsely pilose, the lateral nerves and reticulate nervation prominent, the upper pair elliptic-obovate, often oblique, 6-9 cm long, 2.0-3.5 cm wide, the basal pair considerably smaller, lanceolate to elliptic, 2-5 cm long, $1-2 \mathrm{~cm}$ wide, the petiolules very short, densely ferrugineous-pubescent; rhachis winged, the wings often restricted to the upper interfoliolar sections, $6-10 \mathrm{~cm}$ long, the glands minute, crateriform, glabrous; petiole terete, $1.0-1.5 \mathrm{~cm}$ long, densely ferrugineous-puberulent. Inflorescences axilliary or terminal, solitary or in groups of 2-3; peduncle terete, $3-5 \mathrm{~cm}$ long, densely ferrugineous-tomentose; rhachis $2.5-$ 3.0 cm long, the bracts linear-lanceolate, $4-9 \mathrm{~mm}$ long, pubescent. Flowers sessile, congested, soon deciduous; calyx conic, cleft on two sides, 6-7 mm long, striate, sparsely pilose, the teeth irregular, 1-2 mm long, more pilose; corolla tubular, 7-8 mm long, appressed-pilose, the lobes acute, 1.5 mm long; staminal tube included. Legume unknown.

Highlands of Veracruz, Mexico.
Mexico: veracruz: Jalapa, Pringle 8125 (F, GH, MO), Schiede 674 (GH).
Inga schiedeana is very closely related to I. densiflora of southern Central America. Neither of these species has been reported from Guatemala to Nicaragua.

20. Inga micheliana Harms in Fedde, Rep. Sp. Nov. 13: 525, 1915. (Type Heyde \& Lux 3319)

Trees; branchlets terete or angulate, minutely puberulent when young, in age glabrate. Leaves with 3 pairs of leaflets; leaflets subchartaceous, elliptic to lanceolate, the apex obtuse, ending in a short mucro, the base cuneate, obtuse or rounded, above lustrous, sparsely pilose, the nerves prominent and more densely pubescent, beneath paler, densely pilose, the nerves conspicuous; the upper pair elliptic, oblique, $5.5-7.5 \mathrm{~cm}$ long, $2.5-1.5 \mathrm{~cm}$ wide, the petiolules very short and pilose; rhachis winged, $3-6 \mathrm{~cm}$ long, pilose especially on the midnerve, the glands crateriform, glabrous; petiole terete, about 1.5 cm long, densely ferrugineouspuberulent. Inflorescences axillary, solitary or geminate; peduncle $2.5-4.0 \mathrm{~cm}$ long, ferrugineous-tomentose; rhachis about 1.5 cm long, the bracts minute, ovate, about 1 mm long, densely pubescent. Flowers sessile, congested; calyx tubular, 5 mm long, pilose, the teeth small, irregular, $0.5-1.0 \mathrm{~mm}$ long; corolla tubular, $9-11 \mathrm{~mm}$ long, densely appressed-pilose, the lobes acute, 1.5 mm long; staminal tube included. Legume unknown.

Highlands of northern Guatemala.
Guatemala: Quiche: Río Negro, Heyde \& Lux 3319 (GH, MO).
Definitely known only from the type collection; the small size of the bracts and shape of the calyx help to separate it from the Mexican I. schiedeana.
21. Inga squamigera J. León, sp. nov.

Arbor 8-15 alta; ramulis angulatis glabris dense lenticellatis. Foliola plerumque 5-6-juga (rariore 4-7) elliptica vel oblonga, apice late acuminata mucro 1 mm longo, basi obtusa, assimetrica, supra glabra nitida viridia opaca vel glauca, subtus pallidioria glabra nervis prominentibus, superioria oblonga vel elliptica $11-14 \mathrm{~cm}$ longa $5-6 \mathrm{~cm}$ lata, media elliptco-oblonga $8-14$ longa $3-4 \mathrm{~cm}$ lata, inferioria lanceolata $5-9 \mathrm{~cm}$ longa $2-3 \mathrm{~cm}$ lata, petiolulis 1 mm longis pilosis; rhachibus marginatis $10-18 \mathrm{~cm}$ longis pilosis, glandulis interfoliolaribus patelliformibus circa 2 mm diametralis foramine profundo; petiolis marginatis vel teretibus glabrescentibus $3-4 \mathrm{~mm}$ longis; stipulis linearibus 7 mm longis caducis. Inflorescentia ignota. Legumen oblonga lata vel recurvata marginibus prominentibus $12-16 \mathrm{~cm}$ longa 4-5 cm lata transverse striata junior pallide lenticellata glabrescens.

Trees, $8-15 \mathrm{~m}$ tall, with an open crown; branchlets angulate, densely lenticellate, glabrous. Leaves with 4-7, generally $5-6$ pairs of leaflets; leaflets lanceolate to elliptic, asymmetric, undulate, the apex abruptly acuminate, shortly mucronate, the base obtuse, strongly asymmetric, the lower side narrower in the median and upper leaflets, above light green, lustrous, completely glabrous, the lateral nerves slightly prominent, beneath paler, glabrous, the costa and lateral nerves prominent and sparsely pilose, borders markedly undulate, the upper pairs oblong $11-14 \mathrm{~cm}$ long, $5-6 \mathrm{~cm}$ wide, the median pairs elliptic-oblong $8-14 \mathrm{~cm}$ long, $3-4 \mathrm{~cm}$ wide, the lower pair lanceolate $5-9 \mathrm{~cm}$ long, 2-3 cm wide, the petiole 1 mm long, pilose; rhachis marginate, canaliculate above, $10-18 \mathrm{~cm}$ long, very sparsely pilose, the glands patelliform, $1.5-2 \mathrm{~mm}$ diameter; petiole marginate, the pulvinus darker and thicker, $4-5$ long; stipules linear, 7 mm long 2 mm wide, pilose, caducous. Inflorescences solitary or in groups of 2-4, on the old branches or on defoliated nodes of the branchlets. Peduncle thick, terete, densely brown, pilose, lenticellate, 0.1-1.0 cm long; rhachis thick, cylindric, pilose, $2-3 \mathrm{~cm}$ long, the bracteoles spathulate, pilose 2-3 mm long, semicaducous. Flowers unknown. Legume flat, elliptic, oblong, $12-16 \mathrm{~cm}$ long, $4-5 \mathrm{~cm}$ wide, $1.5-2.0 \mathrm{~cm}$ thick, transversely striate, the borders well developed, when young completely covered with white scales giving a striking appearance to the fruits, in age smooth and green. (The white, powdery scales, of variable size and shape, completely cover the fruits; mites and aphids are common among them.)

Wet lowlands of northern Costa Rica; planted as coffee shade in the San Carlos valley.

Costa Rica: alajuela: road to Upala, at La Bijagua, Léon 4869 (CR, holotype IAiAS, MO); Florencia de San Carlos, Léon 5000 (IAIAS).

This species is closely allied to I. densiflora, differing in the completely glabrous foliage and in the almost white fruits lenticellate at early stages. It is frequent in forests and pastures and often planted as shade trees in the coffee fields of the San Carlos-Río Frío watershed, an area which has not been explored botanically.
22. Inga davidsoniae Standley, Publ. Field Mus. Nat. Hist., Bot. Ser., 22: 79, 1940. (Type Davidson 943)

Trees $4-9 \mathrm{~m}$ tall, densely branched; branchlets terete, minutely tomentose to glabrescent, lenticellate. Leaves with 3-5 pairs of leaflets; leaflets coriaceous, distant, elliptic to ovate, the apex acute to obtuse, mucronate, the base rounded or obtuse, asymmetric, above sparsely pilose to glabrescent, glossy, the nerves impressed, beneath sparsely pilose to glabrescent, the main nerves prominent and pilose, the upper pair elliptic, up to 8 cm long, 4 cm wide, the intermediate elliptic to lanceolate, sometimes strongly asymmetric, the lower pair ovate, about 2.5 cm long, 1.5 cm wide, the petiolules short, pilose; rhachis narrowly winged or marginate, $2.0-7.5 \mathrm{~cm}$ long, pubescent on the midnerve, the glands conic or cupuliform, less than 1 mm long, glabrous; petiole terete, the pulvinar section black, 0.5-2.0 cm long, tomentose. Inflorescences axillary; peduncle about 3.5 cm long; rhachis about 1.5 cm long. Flowers unknown. Legume flat, oblong, straight or curved, truncate to apiculate at the apex, the base rounded, $11-12 \mathrm{~cm}$ long, 4 cm wide, the borders elevated.

Cloud forests of western Panama, at 2250 m elev; known only from the type collection.

Panama: chirieu: Boquete, Volcán Chiriquí, Davidson 943 (F, MO).
This imperfectly known species seems to be related to I. densiflora which is frequent at lower elevations. The glossy and glabrescent leaves are unusual in this genus.
23. Inga stenophylla Standley, Publ. Field Mus. Nat. Hist., Bot. Ser., 18: 499, 1937. (Type Brenes 6841)

Trees; branchlets terete, lanose when young, in age glabrate, densely lenticellate. Leaves with 4-7 pairs of leaflets; leaflets subcoriaceous, oblong to linearlanceolate, the apex straight to falcate, acuminate, the base oblique, acute, above deep green, lustrous, sparsely pilose, the pubescence more dense on the impressed nerves and margins, beneath paler, sparsely pilose to glabrous, the nerves slightly prominent, the upper pair oblique, oblong-lanceolate to falciform, 5-7 cm long, $1.0-1.5 \mathrm{~cm}$ wide, the lower pairs oblong-lanceolate, the basal pair $3.0-5.5 \mathrm{~cm}$ long, $1.0-1.5 \mathrm{~cm}$ wide, the petiolule very short, pilose; rhachis very narrowly winged in the upper interfoliolar sections, slender, $5-9 \mathrm{~cm}$ long, sparsely pilose to glabrous, the glands minute, shortly stipitate, glabrous; petiole terete, $1-2 \mathrm{~cm}$ long, the pulvinus conic. Inflorescences axillary on the old wood or paniculate on the young branchlets, the spikes solitary or in groups of 2-4; peduncle slender, $1-4 \mathrm{~cm}$ long, striate, densely pilose, sometimes with an empty bract in the upper part; rhachis angulate, $2.0-2.5 \mathrm{~cm}$ long, pilose, the bracts minute, lanceolate, about 1.5 mm long, densely pubescent, caducous. Flowers sessile, closely appressed; calyx campanulate, $2-3 \mathrm{~mm}$ long, pilose, the segments obtuse, about 1 mm long; corolla tubular, $6-7 \mathrm{~mm}$ long, pilose, the lobes acute, $1.0-1.5 \mathrm{~mm}$ long; staminal tube included, the filaments $1.0-1.5 \mathrm{~cm}$ long. Legume (immature) flat, oblong, acumi-
nate, $18-22 \mathrm{~cm}$ long, $1.0-1.5 \mathrm{~cm}$ wide, sparsely pilose, the borders elevated; seeds 9-15.

Highland forests of central Costa Rica.
Costa Rica: alajuela: La Calera, San Ramón, Brenes 11574 (CR, F); La Palma, San Ramón, Brenes 5802 (CR, F, IAIAS); Santiago, San Ramón Brenes, 6707 (CR, F, IAIAS), 6841 (CR, F, IAIAS); San Ramón, Brenes 382 [566] (F, US). san jose: Tarbaca, León 3829 (MO, IAIAS).

In I. stenophylla the leaf rhachis varies from winged to almost terete; in this and the floral characters the position of this species seems to be intermediate between this series and the series punctatae.

24. Inga tenuipedunculata J. León, sp. nov.-Fig. 3.

Arbor $15-24 \mathrm{~m}$ alta; ramulis teretibus glabris dense lenticellatis. Foliola plerumque 4 -(rarius 5-) juga elliptica vel lanceolata, apice late acuminata mucro lineari ca 1.5 mm longo, basi acuta oblique, supra saturate viridia opaca sparsissime pilosa vel glabra costa nervisque lateralibus prominentibus et pilosioribus, subtus palliodoria pilosa vel glabra nervis gracilibus prominentibus, superiora anguste elliptica $5-9 \mathrm{~cm}$ longa $2-3 \mathrm{~cm}$ lata, inferiora lanceolata vel ovata $1.5-2.0$ cm longa $0.7-1.0 \mathrm{~cm}$ lata, petiolulis ca 1 mm longis pilosis; rhachibus alatis 4-8 cm longis costa dense pilosis, alis anguste oblongis 2 mm latis glabris, glandulis interfoliolaribus tenuis elevatis $2-3 \mathrm{~mm}$ longis glabris foramine profundo; petiolis teretis vel alatis $1.0-1.5 \mathrm{~cm}$ longis glabrescentibus, pulvino crassiori glabro; stipulis anguste lanceolatis ca 4 mm longis ciliatis subpersistentibus. Inflorescentiae in ramulis brevibus lateralibus paniculatae; pedunculis filiformibus teretibus $3-6 \mathrm{~cm}$ longis sparse pilosis; rhachibus ca 2 cm longis, bracteis lanceolatis 1 mm longis pilosis deciduis. Flores sessiles remoti; calyce tubuloso $3-4 \mathrm{~mm}$ longo, dentibus obtusis minutis; corolla tubulosa infundibuliformi 6-7 mm longa appresse pilosa, lobis acutis ca 2 mm longis; tubo staminali incluso. Legumen ignota.

Lowlands of Veracruz, Mexico.
Vernacular names: acotopillo, frijolillo (Veracruz-Ll. Williams).
Mexico: veracruz: Fortuño, Coatzacoalcos River, Ll. Williams 8935 (F), 9029 (F, ноLotype NY).

Inga tenuipedunculata has no close ally in Central America. It is very similar to I. acuminata Benth. in leaflet shape, the type of narrow wings in the rhachis and the position of the inflorescences on short spurs. It lacks, however, the congested inflorescences and irregular calyces which characterize I. acuminata.
25. Inga barbourii Standley, Publ. Field Mus. Nat. Hist., Bot. Ser., 23: 55, 1944. (Type Barbour 1008)

Trees to 20 m tall; branchlets terete, puberulent to glabrescent, densely lenticellate. Leaves with 4-6 pairs of leaflets; leaflets elliptic to lanceolate, the apex acute to acuminate, ending in a straight and short mucro, the base acute to rounded, above sublustrous, sparsely pilose to glabrous, the costa prominent and

Fig. 3. Inga tenuipedunculata J. León
more pilose, the lateral nerves inconspicuous, beneath sparsely pilose, the margin pilose, the main nerves prominent and more pubescent, the nervation finely reticulate and conspicuous, the upper pair elliptic, $6-9 \mathrm{~cm}$ long, $2-3 \mathrm{~cm}$ wide, the basal pair lanceolate-elliptic, $1.5-2.0 \mathrm{~cm}$ long, $0.7-1.5 \mathrm{~cm}$ wide, the petiolule very short and pilose, giving a sessile appearance to the leaflets; rhachis narrowly and elliptically winged, $3-5 \mathrm{~cm}$ long, pilose especially along the midnerve, the glands small, crateriform, glabrous; petiole terete or marginate, $0.5-1.5 \mathrm{~cm}$ long, densely ferrugineous-puberulent when young, in age glabrate, the pulvinus thick and darker; stipules lanceolate, 2 mm long, pilose, deciduous. Inflorescences 1-4, axillary on the new growth; peduncle terete, filiform, $1-3 \mathrm{~cm}$ long, sparsely pilose; rhachis $0.7-1.0 \mathrm{~cm}$ long. Flowers minute, sessile, congested; calyx tubular, $2-3 \mathrm{~mm}$ long, pilose; corolla tubular, $5-6 \mathrm{~mm}$ long appressed-pilose. Legume flat, oblong, the apex rounded and ending in a short acumen, the margins elevated, the base rounded, $5-6 \mathrm{~cm}$ long, 1 cm wide, sparsely pilose to glabrescent.

Costa Rica: alajuela: Puente La Vieja, San Carlos, León 3578 (IAIAS). cartago: Pavones, Turrialba, Barbour 1008 (CR, F); Río Tuis, León 3842 (IAIAS, MO).

An endemic species not uncommon in the wet subtropical forests of Costa Rica between $500-600 \mathrm{~m}$ elevation; it is a large tree, with loose foliage, rather attractive for its small, light green leaves.

These trees do not bloom as often as other species. Several plants were observed for four years without showing any signs of flowers, in spite of the production of several flushes every year.

26. Inga hintoni Sandwith, Kew Bull. 1937: 304, 1937. (Type Hinton 7617)

Trees 5 to 12 m tall; branchlets terete, densely ferrugineous-pilose in the young growth, in age glabrate and lenticellate. Leaves with 3-6 pairs of leaflets, the terminal pairs with a trend to congestion; leaflets chartaceous, slightly bullate, elliptic to ovate, the apex obtuse, mucronate, the base slightly oblique, rounded, above lustrous, glabrous to sparsely pilose on the main nerves and margins, the nerves well impressed, beneath glabrous to sparsely pubescent, the nerves prominent and pilose, the upper pair elliptic to elliptic-lanceolate, $3-15 \mathrm{~cm}$ long, $1.5-5.0 \mathrm{~cm}$ wide, the lower pairs considerably smaller, lanceolate to oval-lanceolate, the basal pairs $1.5-5.5 \mathrm{~cm}$ long, $1-3 \mathrm{~cm}$ wide, the petiolule short, about 1 mm long, conic, dark, pubescent; rhachis winged, $2.0-5.5 \mathrm{~cm}$ long, sparsely pubescent, the wings cuneate to rhombic, each up to 6 mm wide, the glands small, cupuliform, pertuse at the apex, about 0.5 mm long, the terminal appendix linear, 2 mm long, pilose; petiole terete, $0.7-1.5 \mathrm{~cm}$ long, densely ferrugineous-pubescent, the pulvinus conic and darker, $2-3 \mathrm{~mm}$ long; stipules small, triangular, $2-3 \mathrm{~mm}$ long, persistent. Inflorescences axillary, solitary or in groups of 2-3, peduncle slender, $2.0-3.5 \mathrm{~cm}$ long, ferrugineous-pubescent; rhachis $1.5-3.0 \mathrm{~cm}$ long, the bracts linearspathulate, up to 2 mm long, pilose. Flowers sessile or shortly pedicellate, congested; calyx campanulate, cleft on one side, 3 mm long, pilose, the teeth irregular, $1.0-1.5 \mathrm{~mm}$ long, densely pilose towards the tips; corolla funnelform, $5-6 \mathrm{~mm}$ long, pilose, the lobes acute, $1.5-2.0 \mathrm{~mm}$ long; staminal tube included; ovary glabrous.

Legume flat, oblong, mucronate at the apex, $4-14 \mathrm{~cm}$ long, $1.5-2.5 \mathrm{~cm}$ wide, fer-rugineous-pubescent to glabrate in age, the margins elevated.

Highlands of Mexico, from Michoacan to Chiapas.
Vernacular name: jaquinicuil (Mexico-Hinton).
Mexico: chiapas: Buena Vista, Escuintla, Matuda 1899 (K, NY, US); Cascadas, Siltepec, Matuda 5158 (EAP, F). mexico: Nanchititla, Temascaltepec, Hinton 6171 (MO, US), 7617 (US), 7667 (F), 8103 (MO, US), 8232 (F, GH, MO, NY, US); Temascaltepec, Hinton 4182 (MO, US), 8978 (GH, MO, NY, US); Rincón, Temascaltepec, Hinton 456 (GH), 11202 (F, GH). michoacan: Hacienda Coahuayula, Emrick 48 (F).

This species, well known in central Mexico for its edible pods, is generally found above 1500 m elevation.
27. Inga calderoni Standley, Jour. Wash. Acad. Sci. 13: 352, 1923. (Type Calderón 1392)

Low trees, up to 8 m tall; branchlets terete, densely fulvous-hispid, in age glabrous and lenticellate. Leaves with 4-7 pairs of leaflets; leaflets asymmetric, lanceolate to elliptic, the apex narrower, sometimes curved, acute to acuminate, the base rounded to oblique, asymmetric, above fulvous-pilose, the nerves impressed, beneath dull, more densely pilose, the nerves prominent, the upper pair lanceolate to elliptic, $6-9 \mathrm{~cm}$ long, $2.0-2.5 \mathrm{~cm}$ wide, the lowermost pair $2-4 \mathrm{~cm}$ long, $1.0-1.5$ cm wide; rhachis winged, $5-8 \mathrm{~cm}$ long, pilose, the wings cuneate, broader towards the apical end, sometimes lacking in the lower sections, the glands long pedicellate, the pedicel slender, 2-4 mm long, pilose, pertuse and glabrous at the apex; petiole terete, $0.5-1.0 \mathrm{~cm}$ long, densely fulvous-pilose. Inflorescences solitary, axillary; peduncle terete, $2-3 \mathrm{~cm}$ long, pilose; rhachis $2.5-5.5 \mathrm{~cm}$ long, the bracts linear, $10-12 \mathrm{~mm}$ long, $1-2 \mathrm{~mm}$ wide, densely pilose, caducous. Flowers dense, sessile; calyx tubular $6-14 \mathrm{~mm}$ long, striate, densely pilose to glabrescent, the teeth acute, $1-2 \mathrm{~mm}$ long; corolla tubular, spreading above, $12-14 \mathrm{~mm}$ long, ap-pressed-pilose; staminal tube included, the filaments about 2.5 cm long. Legume oblong, thick, $5-10 \mathrm{~cm}$ long, $3.0-3.5 \mathrm{~cm}$ wide, about 1 cm thick, markedly apiculate, the base rounded, densely ferrugineous-tomentose, the margins elevated; seeds large, surrounded by an edible aril.

Dry lowlands of western Central America from Mexico to Salvador.
Vernacular name: pepeto de mico (Salvador-Calderón).
Mexico: chiapas: Sta. Rosa, Escuintla, Matuda 4236 (F, MO, NY, US).
Guatemala: sacatepequez: Barranco Hondo, Standley 88950 (F, US).
Salvador: ahuachapan: Sierra de Apaneca, Finca Colima, Calderón 20186 (GH). la libertad: Comasagua, Calderón 1392 (GH, US); Santa Tecla, Calderón 1513 (GH, US), Standley 23018 (NY, US).

Pittier included this species with his euinga-tetragonae on account of the fruits; these and the floral characters, as well as the glands, however, are more close to those of the series densiflorae where it is here provisionally placed until better flowering material may clear its definite position.

Series 4. leptanthae Benth. in Hook., Lond. Jour. Bot. 4: 602, 1845, emend.
Small trees or shrubs. Branchlets terete, hispid, in age glabrous. Leaves small, hispid, with 2-3 pairs of leaflets (in the Central American species); rhachis winged, with long-stipitate glands. Inflorescences 1-few; bracteoles lanceolate, pilose, persistent; calyx setose, the teeth subulate; corolla tubular appressed-pilose. Legume flat, ferrugineous-hispid.

The lepanthae as here defined exclude some species, such as I. acuminata, which Bentham (Trans. Linn. Soc. 30: 618, 1875) included in the group. This series is formed mainly by Brazilian species; the Guatemalan I. cookii is a remnant of a formerly widely distributed group. SPECIES . . . 28
28. Inga cookii Pittier, Contr. U. S. Nat. Herb. 18: 203, 1916 (Type Cook \mathcal{E} Griggs 505)
I. subvestita Standley, Publ. Field Mus. Nat. Hist., Bot. Ser., 22: 27, 1940. (Type C. L. Wilson 315)
Trees 3 to 8 m tall; branchlets terete, hispid or glabrescent. Leaves with 2-3 (rarely 4) pairs of leaflets; leaflets shortly petiolulate, obovate to ovate, acute to markedly acuminate at the apex, acute to obtuse and asymmetric at the base, above fulvous-pilose, with the nerves and costa deeply impressed and more pubescent, beneath densely fulvous-pilose, the main secondary nerves prominent and anastomosing close to the margin, leaving alternate and incomplete nerves between, the upper pair obovate to elliptic-obovate, $3-15 \mathrm{~cm}$ long, 2-7 cm wide, the basal pair ovate to elliptic, $2-7 \mathrm{~cm}$ long, $1-4 \mathrm{~cm}$ wide; rhachis winged, $1.5-$ 12 cm long, hispid, the glands long and slenderly pedicellate, up to 2 mm long, glabrous and pertuse at the apex; petiole terete or winged, $0.5-8.0 \mathrm{~cm}$ long, hispidulous. Inflorescences axillary and solitary; peduncle slender, $3-8 \mathrm{~cm}$ long, setose; rhachis $1.5-3.5 \mathrm{~cm}$ long, pilose, the bracts lanceolate, 2-4 mm long, densely pilose, semipersistent. Flowers sessile or pedicellate; pedicel slender, up to 2 mm long, pilose; calyx tubular, $3-5 \mathrm{~mm}$ long, setose especially towards the tips, the lobes subulate, regular, separated by rounded sinuses, $1.0-1.5 \mathrm{~mm}$ long; corolla tubularfunnelform, $9-14 \mathrm{~mm}$ long, sparsely and long pilose, the lobes acute, $1.0-2.5 \mathrm{~mm}$ long, more pubescent; staminal tube included. Legume flat, oblong, 9-12 cm long, $4-5 \mathrm{~cm}$ wide, about 1 cm thick, densely ferrugineous-hispid, the margins not elevated.

Wet forests of Guatemala and Honduras, especially in the Caribbean watershed, from sea level to 1500 m elevation.

Vernacular name; guamo de playa (Honduras-Standley).
Guatemala: alta verapez: Campur to Socoyo, Standley 91712 (F); Chirriacté, Standley 91637 (F) ; Cobán, Standley 69381 (F), 91544 (F), 92687 (F) ; Cobán to San Pedro Carchá, Standley 89779 (F), 89988 (F); Cocolá, NE of Carchá, Standley 70296 (F); Finca Transvaal, C. L. Wilson 315 (F); Gubilgüitz, Steyermark 44407 (F); Santa Cruz, Río Frío, Standley 90207 (F); Santa Cruz to Tactic, Standley 92277 (F); Sachaj, Steyermark 45159a (F); Sepacuité, Cook \& Griggs 103 (US), 202 (US), 226 (US), 505 (US). huehuetenango: Maxbal, Steyermark 48852 (F). izabal: Bananera to La Presa, Steyermark 38192 (F).

Honduras: atlantida: Tela, Standley 54256 (US). comayagua: Siguatepeque, El Achiote, Yuncker, Dawson \& Youse 6292 (F, GH, MO), 6678 (GH).

Inga cookii is one of the most interesting species of this genus in Central America. Its closest allies are a group of Brazilian and Guianan species including I. leptantha, I. ciliata, etc. Especially striking are the type of setose indument found upon most parts of the plants, the peculiar calyx with subulate teeth, and the long and slender peduncles with acute, semi-persistent bracts subtending the rather distant flowers. The description of the fruit is based on the specimens from Siguatepeque, Honduras and, although lacking flowers, are similar to the most typical plants in foliar characters.

Series 5. acuminatae J. León, ser. nov.
Arbor; ramuli teretes. Folia foliolorum paribus 6 minusve; rhachis alata. Inflorescentiae 1 -aliquot pedunculis longis gracilibus rhachibusque curtissimis. Flores congesti globos facientes. Legumina plana oblonga acuminata.

Trees; branchlets terete, glabrous. Leaves with 6 or less pairs of leaflets; leaflets small, narrow, glabrous; rhachis winged; glands patelliform. Inflorescences 1-few, with long slender peduncles; rhachis very short. Flowers congested, giving a globose appearance; bracts linear, persistent; calyx irregular, cleft on one side, forming a well marked pointed projection. Legume flat, oblong, glabrous, acuminate.

Type species: I. acuminata Benth.
This series has affinities to the series densiflorae through I. tenuipedunculata, and to some dysanthae (I. ciliata and I. psitacorum). It is confined to South America, and is formed by few, isolated species. In the area under study only one occurs. species . . . 29
29. Inga acuminata Benth. in Hook., Lond. Jour. Bot. 4: 600, 1845. (Type Lockhart 334)
Feuilleea acuminata (Benth.) O. Ktze., Rev. Gen. Pl. 1: 187, 1891.
Trees up to 12 m tall; branchlets terete, glabrous, striate, sparsely lenticellate. Leaves with 2-4 pairs of leaflets; leaflets coriaceous, narrowly elliptic to lanceolate, often asymmetric, acute to long-acuminate at the apex, the base cuneate, above deep green, glabrous and lustrous, the nerves slightly prominent, beneath paler, punctate, glabrous, the nerves conspicuous, the upper pair $7-12 \mathrm{~cm}$ long, $3-4 \mathrm{~cm}$ wide, the lower pair $4-5 \mathrm{~cm}$ long, $2-3 \mathrm{~cm}$ wide; rhachis winged, $2-6 \mathrm{~cm}$ long, glabrous, the wings cuneate, up to 1.5 cm wide, the glands sessile, patelliform; petiole winged, $1.0-1.5 \mathrm{~cm}$ long, glabrous, the pulvinus terete and thick, about $1 / 4$ the total length; stipules ovate, 3-7 mm long, striate, pilose outside, semipersistent. Inflorescences solitary, axillary; peduncle slender, $3-7 \mathrm{~cm}$ long, striate, pilose; rhachis very short, $0.5-1.0 \mathrm{~cm}$ long, giving to the inflorescences a striking umbelliform appearance, the bracts linear-elliptic, 3-9 mm long, pilose, persistent. Flowers sessile, or shortly pedicellate; calyx tubular, ungulate at the apex in bud, about half cleft on one side, 9 mm long, sparsely pilose to glabrescent, the teeth obsolete; corolla tubular-funnelform, $11-12 \mathrm{~mm}$ long, densely strigose, the lobes
acute, about 2.5 mm long; staminal tube included or very slightly exserted, the filaments $1-2 \mathrm{~cm}$ long; ovary flat, glabrous, the style 3 cm long. Legume flat, oblong, slightly curved, shortly acuminate at the apex, the base rounded, $9-21 \mathrm{~cm}$ long, $2.0-2.5 \mathrm{~cm}$ wide, transversely striate, glabrous, the margins slightly elevated; seeds 18-20.

Trinidad. (Lowlands of northern South America, from Peru to Venezuela.)
Trinidad: Tabaguite, Britton, Freeman \& Nowell 2575 (GH); without locality, Bot. Gard. Trin. Herb. 1043 (US), Chicago Nat. Hist. Mus. Herb. 573834 (F), Hart s. n. (US), Lockhart 334 (K).

A rare species (illustrated in Hooker, Ic. Pl. 13: t. 1202, 1817) noteworthy especially for its calyx, which in bud has a long and curved acumen and which, once open, is perhaps the most irregular in the genus; also striking are the longacuminate leaves and the congested inflorescence. Its closest ally is I. urabensis L. Uribe, of northern Colombia. Another species similar in foliar characters to I. acuminata is the little known I. angustifolia Willd. of Venezuela.

Series 6. pilosulae J. León, ser. nov.

Arbor mediocris; ramuli pilosi glabrescentesve. Folia maga foliolorum paribus paucis sparse flavo-pilosorum; rhachis alata. Inflorescentiae pedunculis curtis crassis; calyx confertim flavo-pilosus. Legumina plana tomento crasso flavo.

Medium sized trees; branchlets pilose to glabrescent. Leaves large, with few pairs of leaflets, thin or chartaceous, sparsely yellow-pilose; rhachis winged, the glands thin and stipitate. Inflorescences with short, stout peduncles; the flowers congested in a very short rhachis; calyx tubular, deeply cleft, striate, sparsely pilose; corolla tubular, densely yellow-pilose. Legume flat, oblong, covered with a yellow, thick tomentum.

Type species: I. pilosula (Rich.) Macbride
The pilosulae are characterized by large leaves, short peduncles in which the flowers form a congested inflorescence, and densely yellow-pilose legumes. They seem to be intermediate between the previous series and some of the large flowered species of Inga such as in the vulpinae.

A South American group with marginal representatives in Trinidad and Central America. species . . . 30-32
a. Leaves with 2 pairs of leaflets; leaflets long-acuminate, peduncle $4-10 \mathrm{~cm}$
long. Trinidad
aa. Leaves with more than 2 pairs of leaflets; leaflets obtuse or acute at the apex; peduncle $1-4 \mathrm{~cm}$ long.
b. Upper leaflets oblong to obovate; peduncle less than 1.5 cm long; corolla 12-16 mm long. Panama
31. I. hayesil
bb. Upper leaflets elliptic-oblong; peduncle $2-4 \mathrm{~cm}$ long; corolla $18-22 \mathrm{~mm}$ long. Costa Rica
32. I. venusta
30. Inga pilosula (Rich.) Macbride, Publ. Field Mus. Nat. Hist., Bot. Ser., 13: 41, 1943.

Mimosa pilosula Rich., Act. Soc Hist. Nat. Paris 1: 113, 1792 (Type Le Blond s.n. photo)
Inga quassiaefolia Willd. in L., Sp. Pl. 4: 1013, 1806. (Type Hoffmansegg s.n. photo)
I. nitida Willd., loc. cit. (Type Hoffmansegg s.n. photo)

Mimosa lucida Vahl, Eclog. 3: 31, 1807. (ex char.)
M. quassiaefolia (Willd.) Poir. in Lam., Encycl. Suppl. 1: 41, 1810.
M. nitida (Willd.) Poir., loc. cit.

Inga pilosiuscula (Rich.) Desv., Jour. Bot. 1: 71, 1816.
I. setifera DC., Prodr. 2: 432, 1825. (Type Mus. Paris s.n. photo)
I. platycarpa Benth. in Hook., Lond. Jour. Bot. 2: 142, 1840 (fide Bentham). (Type Schomburgk 534, not seen)
I. affinis Steud., Flora 1843: 758, 1843. (Type Hostmann \& Kappler 1157)

Feuilleea pilosula (Rich.) O. Ktze., Rev. Gen. Pl. 1: 186, 1891.
F. quassiaefolia (Willd.) O. Ktze., loc. cit.
F. setifera (DC.) O. Ktze., loc. cit.
Trees 6 to 14 m tall; branchlets terete, striate, dense ferrugineous-pilose or glabrous, lenticellate. Leaves large, with 2 pairs of leaflets; leaflets coriaceous to chartaceous, broadly elliptic, asymmetric, the apex markedly acuminate, the acumen about 1 cm long, the base acute to obtuse, oblique, above dark and lustrous, sparsely pilose to glabrous, the nerves impressed, beneath paler, more densely pilose to glabrous, the nerves prominent, the upper pair broadly elliptic, cuneate at the lower half, $14-19 \mathrm{~cm}$ long, $7-9 \mathrm{~cm}$ wide, the basal pair elliptic-ovate, $9-10 \mathrm{~cm}$ long, $6-7 \mathrm{~cm}$ wide; rhachis broadly winged, pilose to glabrous, $4-8 \mathrm{~cm}$ long, the wings cuneate, the glands crateriform, about 2 mm in diam, glabrous, the apical appendix linear, $4-10 \mathrm{~mm}$ long, pilose, caducous; petiole winged above, $0.5-5.5 \mathrm{~cm}$ long, pilose to glabrescent, the pulvinus about 1 cm long, thick and darker; stipules linear, 4-10 mm long, pilose, deciduous. Inflorescences axillary, $1-2$ spikes in each axil; peduncle terete, $4-10 \mathrm{~cm}$ long, striate, ferrugineous-pubescent to glabrous; rhachis $1-2 \mathrm{~cm}$ long, the bracts linear, 4 mm long, pilose, caducous. Flowers sessile, yellow, congested; calyx tubular, cleft on one side, $6-7 \mathrm{~mm}$ long, pilose, striate; corolla tubular-funnelform, $12-16 \mathrm{~mm}$ long, appressed-pilose, the hairs bright yellow, the lobes acute, $1.5-2.0 \mathrm{~mm}$ long; staminal tube included to slightly exserted, the filaments up to 2.5 cm long. Legume flat, thin, oblong, $8-17 \mathrm{~cm}$ long, $3-4 \mathrm{~cm}$ wide, transversely striate, in age glabrate, the margins elevated.

Lowland forests of Trinidad. (Amazonian Peru and Brazil, Venezuela and the Guianas.)

Trinidad: Maravaltful, O. Kuntze 792 (F, US); O’Meara savanna, Britton \mathcal{B} Britton 2507 (US); Providencia, Sta. Cruz, Broadway 6591 (MO); San Jose, O. Kuntze 864 (F); Via Valencia, Broadway 2292 (F, GH, MO, US); without locality, Trin. Bot. Gard. Herb. 2845 (F).

Inga pilosula has attracted the attention of travelers and botanists by its yellow flowers, so unusual in this genus. Its variability is evidenced by the abundant synonymy in which specific epithets referring to the indument are so common as to indicate that the variability is largely to be found in the indument rather than in more stable characters. Some of the Trinidad specimens are glabrous, while the majority of the Venezuelan and Guianan plants are densely pilose. The names I. nitida and I. quassiaefolia have been used for the Brazilian specimens with glabrous and lustrous leaves. It may be possible that these names represent different species, but at present no important morphological characters seem to permit a separation of species in the material examined.

31. Inga hayesir Benth., Trans. Linn. Soc. 30: 617, 1875. (Type Hayes 62)

Small trees, 3 to 9 m tall; branchlets terete, pilose when young, in age glabrate, lenticellate. Leaves with 2-4 pairs of leaflets; leaflets oblong to obovate, the base rounded to acute, often asymmetric, above strigose or sparsely pilose, the nerves prominent or in shallow grooves, beneath densely pilose, the nerves prominent, the upper pair oblong-elliptic to obovate, generally very asymmetric, $7-14 \mathrm{~cm}$ long, $3-6 \mathrm{~cm}$ wide, the lowermost pair obliquely ovate to elliptic, 4-6 cm long, $2-3 \mathrm{~cm}$ wide; rhachis winged, $3-9 \mathrm{~cm}$ long, strigose especially along the midnerve, ending in a linear apex (sometimes a terminal leaflet), the wings cuneate, up to 1 cm wide, the glands shortly stipitate, about 1 mm in diam, concave and glabrous at the apex; petiole terete at the pulvinar section, winged or marginate above, $1-2 \mathrm{~cm}$ long, pilose; stipules obovate, acute, up to 6 mm long, tomentose without, semipersistent. Inflorescences axillary, solitary or clustered, sessile or shortly pedunculate; peduncles terete, up to 1.5 cm long, ferrugineous-strigose; rhachis strigose, $1.5-2.5 \mathrm{~cm}$ long, the bracts oblong, about 2 mm long, acute, pubescent outside, caducous. Flowers sessile, congested; calyx tubular, generally deeply cleft on one side, $6-11 \mathrm{~mm}$ long, dark reddish, striate, pilose at the base, glabrescent, the teeth small, irregular, $1-2 \mathrm{~mm}$ long, with tufts of hairs at the tips; corolla tubular-funnelform, $12-16 \mathrm{~mm}$ long, densely strigose, the lobes acute, $2-4 \mathrm{~mm}$ long; staminal tube included, the filaments up to 3 cm long. Legume flat, thick in age, 10 cm long, 1.5 cm wide in a young specimen, densely yellowstrigose.

Lowlands of Panama. (Colombia.)
Panama: canal zone: Balboa, Correll 12273 (GH); Chivi-Chivi trail, Maxon \& Harvey 6608 (US); Fort Kobe, Allen 1890 (GH, MO, NY, US); Cocoli, Riley 122 (US); Miraflores, P. White 79 (GH, MO, NY); Paraíso, Hayes $62(\mathrm{~K})$. panama: Bella Vista, Panama City, Maxon \& Valentine 6931 (F, GH, US), 6946 (F); Matías Hernández, Pittier 6714 (F, GH, NY, US) ; Monte Oscuro, Zetek 3497 (F); Old Panama, Riley 140 (US); Pacora, Woodson, Allen \& Seibert 759 (MO, NY, US); Panamá, Sargent 25 in part (US); Pedro González, Perlas Islands, Allen 2593 (MO).

In I. hayesii, as in the Costa Rican I. venusta, there is a marked trend towards a short, almost obsolete peduncle accompanied by a reduction of the floral rhachis, which gives a capitate and often sessile appearance to the inflorescences; the calyx is noteworthy also for the reddish color and deeply cleft sides.
32. Inga venusta Standley, Publ. Field Mus. Nat. Hist., Bot. Ser., 18: 500, 1937. (Type Brenes 6256)
Trees; branchlets terete, glabrous, densely lenticellate. Leaves with 3-4 pairs of leaflets; leaflets coriaceous oblong to lanceolate, asymmetric, obtuse to obtusely acuminate at the apex, the acumen up to 1 cm long, the base obtuse to rounded, above lustrous, glabrous, the nerves slightly impressed, beneath glabrous, the main nerves and reticulate enervation conspicuous, the upper pair elliptic, generally very oblique, $10-18 \mathrm{~cm}$ long, $3-4 \mathrm{~cm}$ wide, the lower pairs elliptic to lanceolate, $4-13 \mathrm{~cm}$ long, $2.0-4.5 \mathrm{~cm}$ wide, the petiolules dark, about 1 mm long, pilose; rhachis cuneately winged, $3.5-11.0 \mathrm{~cm}$ long, sparsely pilose on the midnerve,
the wings up to 1.5 cm wide, glabrous, the glands stipitate, pertuse at the apex, about 1 mm in diam, the appendix linear, about 12 mm long; petiole winged above, $1.5-6.0 \mathrm{~cm}$ long, sparsely pilose to glabrous, the pulvinus terete, about 0.5 cm long. Inflorescences axillary or in groups in the terminal branchlets, solitary or 2-3 in each axil; peduncle terete $2.0-2.5 \mathrm{~cm}$ long, striate, sparsely pilose; rhachis $0.5-1.0 \mathrm{~cm}$ long, the bracts less than 1 mm long, caducous. Flowers sessile, congested; calyx cupulate-tubular, deeply cleft on one side, $6-9 \mathrm{~mm}$ long, above glabrous and striate, pilose at the base, the teeth very small and irregular; corolla tubular, $18-22 \mathrm{~mm}$ long, with a dense, yellow pubescence, the lobes 4 mm long; staminal tube included, the filaments about 1.5 cm long; ovary glabrous. Legume unknown.

Wet forests of central Costa Rica.
Vernacular name: guabo amarillo (Costa Rica-Brenes).
Costa Rica: alajuela: La Palma, San Ramón, Brenes 6255 (CR, F, IAIAS), Brenes 6256 (CR, F, IAIAS).

An endemic and poorly known species; its closest relationship seems to be with I. hayesii of the lowlands of Panama. Both have the same type of inflorescence, a short spike with congested rhachis, and similar structure in the deeply cleft calyx. Inga venusta differs in the glabrous and more lanceolate leaves.

Series 7. calocephalae Benth. in Hook., Lond. Jour. Bot 4: 609, 1845.
Trees; branchlets angulate or terete, densely yellow-hispid when young, glabrate in age. Leaflets large, densely pilose; rhachis winged; stipules large ovate to lanceolate, subpersistent. Inflorescence long pedunculate, the bracts well developed, subpersistent. Flowers large, sessile; calyx tubular, narrow, more than 15 mm long, glabrescent; corolla tubular, $30-45 \mathrm{~mm}$ long, hirsute. Legume flat, 2535 cm long, $4-6 \mathrm{~cm}$ wide, densely yellow-pilose.

Series calocephalae is here restricted to a group of species centering around I. fastuosa Willd. and I. macrophylla Willd., of which only two representatives are found in the area under study, I. mucuna Walp. \& Duchass. from Panama, and I. venosa Benth. from Trinidad.

Bentham and Pittier placed in the calocephalae several species that in the present treatment are put in different series. They were maintained in the same group with the species mentioned above on the basis that all them have large and subpersistent stipules and bracts, although they are quite distinct in flower and fruit characters.

SPECIES . . . 33-34
a. Stipules ovate, $7-8 \mathrm{~mm}$ long; bracts $5-9 \mathrm{~mm}$ long; branchlets tomentose; petiole terete or marginate. Panama
33. I. mucuna
aa. Stipules lanceolate, about 16 mm long; bracts $10-15 \mathrm{~mm}$ long; branchlets
long-pilose; petiole winged. Trinidad
34. I. venosa
33. Inga mucuna Walp. \& Duchass. in Walp., Ann. Bot 2: 456, 1851-52. (Type Duchassaing 81)
Trees up to 20 m tall; branchlets terete or angulate, densely ferrugineouspubescent. Leaves with 3-4 pairs of leaflets; leaflets ovate, the apex acute to acumi-
nate, the base rounded, sometimes asymmetric, above sparsely pilose, the costa and main nerves prominent and more pubescent, beneath densely pilose, the hairs yellow and curved, the nerves prominent, the upper pair ovate to elliptic-ovate, 13-19 cm long, $7-11 \mathrm{~cm}$ wide, the basal pair ovate, $6-12 \mathrm{~cm}$ long, $4-5 \mathrm{~cm}$ wide; the petiolule short, conic, $2-3 \mathrm{~mm}$ long, densely pubescent; rhachis winged, $11-14 \mathrm{~cm}$ long, densely tomentose along the midnerve, the wings cuneate, each about 5 mm wide, sparsely pilose, the glands small, umbiliciform, less than 1 mm in diam, glabrous; petiole terete or slightly winged, $1.5-3.5 \mathrm{~cm}$ long, densely ferrugineous-pilose, the pulvinus thicker; stipules ovate, $7-8 \mathrm{~mm}$ long, $5-8 \mathrm{~mm}$ wide, minutely pubescent, apiculate, deciduous. Inflorescences solitary or in groups, axillary, long pedunculate; peduncle terete, $4-7 \mathrm{~cm}$ long, densely ferrugineous-tomentose; rhachis $3.0-4.5 \mathrm{~cm}$ long, the bracts triangular, $5-9 \mathrm{~mm}$ long, yellow-pubescent, subpersistent. Flowers numerous, sessile; calyx tubular, $17-20 \mathrm{~mm}$ long, striate, glabrous except at the tip, the teeth small, acute, about 1 mm long, sericeous; corolla tubular, $40-55 \mathrm{~mm}$ long, sparsely sericeous; the lobes acute, slightly spreading, 5 mm long; staminal tube exserted, the filaments up to 4 cm long. Legume flat, straight or twisted, $25-33 \mathrm{~cm}$ long, $5-6 \mathrm{~cm}$ wide, 0.5 cm thick, densely ferrugineous-hirsute, the margins rounded.

Lowlands of Panama.
Panama: canal zone: Balboa, Standley 27172 (NY, US), 32124 (US); Barro Colorado Island, Woodworth \& Vestal 665 (F). Darien: Boca de Cupé, Allen 882 (MO, NY, US); Sambú River, Pittier 5525 (NY, US). panama: Panamá, Duchassaing 81 (GH), Sargent 25 in part (US).

Inga mucuna is the only Central American representative of the series calocephalae. Its closest allies are I. fastuosa of Venezuela and I. venosa endemic to Trinidad. Further collections may prove the independence of the three species or their grouping into one unit.
34. Inga venosa Griseb. ex Benth., Trans. Linn. Soc. 30: 623, 1875. (Type Sieber distr. Wabra 104)

Trees 10 to 15 m tall; branchlets terete, striate, densely ferrugineous-hirsute, lenticellate. Leaves with 3-4 pairs of leaflets; leaflets elliptic to ovate, subchartaceous, the apex acute, obtuse to markedly acuminate, the acumen $3-4 \mathrm{~mm}$ long, pilose, the base rounded, unequal, above lustrous, sparsely pilose to glabrescent, the nerves impressed, beneath dull, more densely pilose, the nerves prominent, the upper pair broadly elliptic, $15-22 \mathrm{~cm}$ long, $7-9 \mathrm{~cm}$ wide, the basal pair ovate, $6-9 \mathrm{~cm}$ long, $4-6 \mathrm{~cm}$ wide, the petiolule about 2 mm long, densely pilose; rhachis winged, 9-17 cm long, ending in a linear appendix, 12 mm long, pilose, the wings cuneate, each up to 1 cm broad, pilose, the glands stipitate, glabrous and patelliform at the apex; petiole winged, $2.0-2.5 \mathrm{~cm}$ long, pilose, the pulvinus about 0.5 cm long, densely ferrugineous-pilose; stipules triangular, long-acuminate, 14-17 mm long, densely pilose to glabrescent, persistent. Inflorescences axillary, in groups, peduncle and rhachis ferrugineous-pubescent, the bracts lanceolate, $10-15 \mathrm{~mm}$ long, pilose. Flowers sessile; calyx tubular, $15-22 \mathrm{~mm}$ long, striate, glabrescent, the teeth
acute, 2-3 mm long, pilose at the tips; corolla tubular-funnelform, $32-42 \mathrm{~mm}$ long, appressed-pilose to glabrescent, the lobes acute, 4 mm long, densely pilose; staminal tube exserted. Legume (fide R. O. Williams) flat, oblong, up to 28 cm long, 4 cm wide, densely ferrugineous-hirsute, the margins elevated.

Lowland forests of Trinidad.
Trinidad: Talparo, Britton, Britton \& Freeman 2164 (GH); without locality, Sieber distr. Wabra 104 (GH, MO).

Inga venosa belongs to a group of South American species that centers around I. macrophylla; it differs from the rest of them in the slender flowers and in this character is closer to the endemic Panamanian I. mucuna. It also has been confused with the Venezuelan I. fastuosa Willd., which has broader flowers, although in leaves and fruits they seem to be quite similar. This is the only endemic species of Inga in Trinidad.

Series 8. Goldmanianae J. León, ser. nov.
Arbor; ramuli angulati vel teretes. Folia magna pilosa; rhachis alata. Inflorescentiae pedunculis longis. Flores sessiles in alabastro globosi; calyx praesertim magnus dense flavo-pilosus; corolla confertim albosericeus. Legumina plana flavohirsuta.

Trees; branchlets angulate to terete, densely yellow-pilose, or glabrate. Leaves large, pilose, with supernumerary glands on the costa of the leaflets; rhachis winged. Inflorescences long-pedunculate, the bracts $5-6 \mathrm{~mm}$ long, caducous. Flowers sessile, spheric in bud; calyx unusually large, $12-17 \mathrm{~mm}$ long, $8-12 \mathrm{~mm}$ wide, densely yellow-pilose; corolla $25-28 \mathrm{~mm}$ long, $10-15 \mathrm{~mm}$ wide, densely white-sericeous. Legume flat, $20-25 \mathrm{~cm}$ long, $4-6 \mathrm{~cm}$ wide, yellow-hirsute.

Type species: I. goldmanii Pittier.
The only representative of this series is I. goldmanii Pittier from Costa Rica and Panama. The most striking character is the flower, which in size could be compared only with that of I. sessilis Benth. of southern Brazil. Inga goldmanii does not seem to have any close ally among the species of Inga that I have studied from Central and South America.
species . . . 35
35. Inga goldmanii Pittier, Contr. U. S. Nat. Herb. 18: 198, 1916.-Fig 4. (Type Goldman 1866)

Large trees up to 20 m tall; branchlets terete, striate, densely ferrugineoushirsute, sparsely lenticellate. Leaves with 3-5 (generally 4) pairs of leaflets; leaflets elliptic to ovate, acute to acuminate at the apex, the acumen linear, up to 6 mm long, the base cordate to rounded, generally asymmetric, above lustrous, sparsely pilose to glabrous, the costa and lateral nerves impressed and more pubescent, the former with a gland at less than 2 cm from the rhachis, beneath pilose, scabrous, the nerves prominent and more pilose, the upper pair elliptic, 1825 cm long, $7-14 \mathrm{~cm}$ wide, the intermediate pairs ovate to elliptic-ovate, $9-15 \mathrm{~cm}$ long, $5-8 \mathrm{~cm}$ wide, the lowermost pair ovate, $5-9 \mathrm{~cm}$ long, $3-6 \mathrm{~cm}$ wide, the peti-
olules short, conic, 2 mm long, pubescent to glabrous; rhachis winged, $14-25 \mathrm{~cm}$ long, densely hirsute, the wings broader in the upper interfoliolar sections, elliptic, each side up to 11 mm wide, sparsely pilose, the terminal appendage linear, 6-9 mm long, tomentose, the glands long and slenderly pedicellate, 4 mm long, glabrous; petiole winged above, $1.5-4.0 \mathrm{~cm}$ long, ferrugineous-hirsute, the pulvinar section thicker and terete; stipules cordate, obtuse, up to 12 mm long and 20 mm wide, pilose, deciduous. Inflorescences axillary, generally solitary; peduncle stout, $4-8 \mathrm{~cm}$ long, densely ferrugineous-hirsute; rhachis $4-7 \mathrm{~cm}$ long, the bracts cordate, 6 mm long, densely tomentose, caducous. Flowers unusually large, sessile, distant, spherical in bud; calyx campanulate, $12-17 \mathrm{~mm}$ long, $8-12 \mathrm{~mm}$ wide, densely yellow-pilose, the teeth obtuse, $4-6 \mathrm{~mm}$ long; corolla tubular-campanulate, 25-28 mm long, $10-15 \mathrm{~mm}$ wide, densely white-sericeous; staminal tube included, the filaments up to 45 mm long. Legume flat, oblong, straight or curved, twisting in age, up to 25 cm long, 6 cm wide, 1 cm thick, densely ferrugineous-hirsute, the margins rounded.

Rain forests of the Atlantic watershed in Costa Rica and Panama.

Abstract

Costa Rica: alajuela: Los Chiles, Holm \& Iltis 951 (MO). limon: Banana River near Limón, Cook \& Doyle 429 (US); Limón, Lankester 172 (K); Livingston on the Reventazón River, Rowlee \& Stork 788 (NY, US); Río Hondo, Pittier 16376 (CR, US); Shirores, Talamanca, Tonduz 9358 (CR, US).

Panama: bocas del toro: Cricamola, Almirante, G. P. Cooper 527 (F). canal zone: Barro Colorado Island, Avilés 68 (F), Bailey \& Bailey 223 (F), Bangham 392 (F), 396 (F), Killip 40021 (MO, US), Shattuck 514 (F), 584 (F), Standley 40999 (US), Starry 231 (F), Wetmore \& Abbe 15 (F, GH), 15a (F), Woodworth \& Vestal 321 (F), Zetek 3461 (F), 3462 (F); Frijoles, Allen 922 (GH, MO); Gatún, Goldman 1866 (US); Lion Hill Station, Hayes 598 (US); Monkey Hill, Lehmann 1001 (US); Salamanca, Steyermark \& Allen 16754 (GH); without locality, Epplesheimer s. n. (F).

This species, without any apparent affinity, is one of the most striking Leguminosae of Central America. It grows in the rain forest where it attains the level of the highest trees. Especially noteworthy are the large flowers surpassed in size in this genus only by I. sessilis Benth. of southern Brazil. Another rare character is the foliolar glands, more conspicuous in the seedlings and young leaflets, paralleled only in I. adenophylla Pittier and I. pruriens Poepp., both of the upper Amazon.

Series 9. dysanthae Benth., Trans. Linn. Soc. 30: 625, 1875.
Trees; branchlets terete, ferrugineous-pilose. Leaves large; leaflets glabrous and sublustrous above, densely and softly pilose beneath; rhachis terete (generally winged in the South American species). Inflorescence pedunculate, the bracts small, caducous. Flowers distant; calyx cupular-shaped, $4-5 \mathrm{~mm}$ long, lanose; corolla up to 18 mm long, lanose, pinkish. Legume flat, densely pilose.

Fig. 4. Inga goldmanii Pittier
36. Inga standleyana Pittier, Contr. U. S. Nat. Herb. 18: 204, 1916. (Type Pittier 5496)

Low trees; branchlets terete, densely ferrugineous-pilose. Leaves with 4 pairs of leaflets; leaflets obovate to elliptic, subchartaceous, the apex obtuse to markedly apiculate, the base obtuse to rounded or subemarginate, above opaque, sparsely pilose to glabrescent, closely pilose on the depressed nerves and margins, beneath paler, densely yellow-pilose, the 11-14 lateral nerves very prominent, the reticulate nervation conspicuous, the upper pair rhombic-ovate to elliptic, oblique and cuneate at the base, $11.0-13.5 \mathrm{~cm}$ long, $7.5-8.0 \mathrm{~cm}$ wide, the lower pair elliptic to ovate, $6-7 \mathrm{~cm}$ long, $4.0-4.5 \mathrm{~cm}$ wide, the petiolules conic, about 1.5 mm long, densely pilose; rhachis terete, $3.0-3.5 \mathrm{~cm}$ long, ferrugineous-pubescent; stipules triangular, 2 mm long, pilose, caducous. Inflorescences axillary or terminal, solitary or paired; peduncle terete, $1.5-4.0 \mathrm{~cm}$ long, striate, ferrugineous pilose; rhachis $4.5-6.0 \mathrm{~cm}$ long, the bracts ovate, caducous. Flowers distant, sessile, soon deciduous; calyx cupular-shaped, $4-5 \mathrm{~mm}$ long, densely lanose, the teeth shallow, about 1 mm long, corolla broad, funnelform, $15-18 \mathrm{~mm}$ long, lanose, the lobes broad, obtuse, 3-4 mm long; staminal tube included to slightly exserted, pinkish, the
filaments about 2.5 cm long; ovary lanose. Legume (fide Pittier) flat, densely fer-rugineous-pilose.

Rain-forests of western Panama.
Panama: darien: vic of La Palma, Pittier 5496 (GH, US).
An endemic species regarded by some authors as close to I. dysantha Benth. (Type Spruce 1816) but easy to separate because of its unwinged rhachis and the size of its flowers. The closest ally, however, is I. rubiginosa DC. placed by Bentham and Pittier in euinga-sulcatae, probably on the slight similarity in foliage characters. Inga rubiginosa is quite a variable species; it has, like I. standleyana, a terete rhachis and a very similar type of leaves. The flowers are larger and more slender than in the Panamanian plants. Inga standleyana is the only member of the series dysanthae in North America.

Series 10. spectabiles J. León, ser. nov.
Arbor; ramuli angulati, glabrescens. Folia magna, glabrescens; rhachis teretia vel alata. Inflorescentiae pedunculis brevis, bracteis magnis. Flores sessiles congesti. Legumina plana, glabrata.

Large trees; branchlets angulate, glabrescent. Leaves large; leaflets chartaceous, glabrous or sparsely pilose; rhachis terete, subalate or winged; stipules linearlanceolate, $6-9 \mathrm{~mm}$ long, subpersistent. Inflorescences shortly pedunculate; bracts large, tomentose, subpersistent. Flowers sessile, clustered; calyx cleft to one side, $8-9 \mathrm{~mm}$ long, densely pubescent; corolla tubular, $18-24 \mathrm{~mm}$ long, tomentose. Legume flat, $30-70 \mathrm{~cm}$ long, $4-8 \mathrm{~cm}$ wide, glabrous.

Type species: I. spectabilis (Vahl) Willd.
This series corresponds to spectabiles, rank unspecified, Britton \& Killip, Ann. N.Y. Acad. Sci. 35: 111, 1936, a nomen nudum, and in part to spectablees, Gutiérrez, Rev. Fac. Nac. Agr. Col. 7: 53, 1947, also a nomen nudum.

Inga spectabilis Willd. is the only member of this series that occurs in Central America. Several other species have been described from northern South America. species . . . 37
37. Inga spectabilis (Vahl) Willd. in L., Sp. Pl. 4: 1017, 1806. (ex char.)

Mimosa spectabilis Vahl, Skr. Nat. Selsk. Kjob. 21: 219, pl. 10, 1792.
Inga fulgens Kunth, Mim. 36, pl. 11, 1819. (ex char.)
I. lucida H.B.K., Nov. Gen. Sp. Pl. 6: 287, 1824. (ex char.)

Feuilleea spectabilis (Vahl) O. Ktze., Rev. Gen. Pl. 1: 184, 1891.
Inga smithii Britton ex Britton \& Killip, Ann. N. Y. Acad. Sci. 35: 117, 1936. (Type Killip \& Smith 14923)
Trees up to 12 m tall, the crown spreading; branchlets angulate, glabrescent, lenticellate. Leaves large, with 2-3 pairs of leaflets; leaflets elliptic to obovate, coriaceous, the apex rounded to mucronate, the base asymmetric, obtuse to cordate, above dark green, lustrous and glabrescent, the nerves deeply impressed and sparsely pilose, beneath paler, sparsely pilose, the nerves very prominent, more densely pilose, the upper pair $19-28 \mathrm{~cm}$ long, $8-15 \mathrm{~cm}$ wide, the basal pair 10-16 cm long, $5-9 \mathrm{~cm}$ wide, the petiolules conic, $3-5 \mathrm{~mm}$ long, pilose; rhachis terete to winged, up to 11 cm long, pubescent or lenticellate, the wings cuneate, broader above, each obsolete to 12 mm wide, the glands short, patelliform, 2-3 mm in
diam; petiole stout, subterete, sometimes winged above, $6-15 \mathrm{~mm}$ long, puberulent; stipules linear to lanceolate, acute, $6-9 \mathrm{~mm}$ long, about 4 mm wide, subpersistent. Inflorescences 2-6 in terminal panicles, or solitary and axillary; peduncles angulate, $3-8 \mathrm{~cm}$ long, striate, puberulent; rhachis $1-5 \mathrm{~cm}$ long, the lower bracts cordate, $8-14 \mathrm{~mm}$ long, $6-11 \mathrm{~mm}$ wide, tomentose and subpersistent, the upper bracts elliptic, $8-10 \mathrm{~mm}$ long, $3-5 \mathrm{~mm}$ wide, densely tomentose. Flowers congested, sessile; calyx tubular, cleft to one side, $8-9 \mathrm{~mm}$ long, densely pubescent, the teeth spreading, about 3 mm long; corolla tubular, $18-24 \mathrm{~mm}$ long, tomentose, the lobes spreading; staminal tube slightly exserted, the filaments up to 4 cm long. Legume flat, oblong, woody, straight or slightly curved, up to 70 cm long, 8 cm wide and 3 cm thick, glabrous, the margins not elevated; seeds numerous, surrounded by scanty aril.

Mexico; southern Central America. (Colombia and Venezuela).
Vernacular names: guabo machete (Costa Rica); guabo real (Panama).
Mexico: oaxaca: Ubero, Ll. Williams 9277 (F), 9386 (F).
Costa Rica: alajuela: Guatuso, Holm \& Iltis 834 (MO); Muelle de San Carlos, León 2426 (IAIAS). puntarenas: Boruca, Tonduz 4765 (CR); Buenos Aires, Tonduz 3826 (CR). san Jose: El General, Skutch 2727 (GH, MO, NY, US).

Panama: baru: Progreso, Cooper © Slater 203 (F, NY, US). bocas del toro: Changuinola Valley, Cooper \& Slater 124 (US); Fish Creek, von Wedel 2392 (GH, US). canat zone: Ancón, Maxon s. n. (US); Balboa, Standley 29243 (US); Barro Colorado Island, Avilés 925 (F), Bailey \& Bailey 293 (F), 409 (F), Kenoyer 370 (US), Zetek 3481 (F), 3489 (F), 3669 (F); Culebra, Pittier 2423 (GH, NY, US); Las Cascadas, Pittier 3476 (US). chiriqui: San Félix to Cerro Flor, Allen 1944 (GH, MO, US). cocle: Bismarck, Penonomé, R. S. Williams 383 (NY), 584 (NY). panama: Juan Díaz, Standley 30571 (US); Las Sabanas, Bro. Paul 139 (US); Río Tapia, Standley 28147 (US); Taboga Island, Maxon 6922 (GH, US). without locality: Kuntze 1923 (NY).

Inga spectabilis is a striking tree when loaded with the long, pendant fruits. It is planted commonly around the Indian dwellings for its fruits and as a shade tree in the pastures of the lowlands. The specimens examined, as well as many from Colombia and Venezuela, show rather restricted variability. Inga smithii is based on a young specimen more densely pubescent than the adult plants. The Mexican specimens, known only in fruit, show a remarkable discontinuity and, although their foliage and legumes are similar to the southern plants, only more collections will prove the correctness of this relationship.

An incomplete specimen from Guatemala, Pittier 1911: 200, also may belong to this species.
Series 11. vulpinae Benth. in Hook., Lond. Jour. Bot. 4: 604, 1845.
Trees; branchlets angulate to terete, densely yellow-pilose when young, in age glabrate. Leaves large; folioles pilose, acuminate; rhachis winged, the glands slenderly pedicellate; stipules ovate, pilose, persistent. Inflorescences shortly pedunculate; bracts long, acute, persistent. Flowers sessile; calyx tubular, less than 5 mm wide, glabrescent; corolla tubular, densely pilose. Legume flat, thin, densely yellow-pilose.

This series is formed by few species, many of them restricted to the southern limit of the genus. Among them the most typical are I. vulpina Mart. and I. hirsutissima Rusby, the latter quite close to the Central American I. tonduzii J. D. Smith.

SPECIES . . . 38
38. Inga tonduzii J. D. Smith, Bot. Gaz. 44: 112, 1907.-Fig 5. (Type Tonduz 12928)

Trees up to 12 m tall; branchlets terete, the young one aristate, hirsute. Leaves with 2, generally 3-4 pairs of leaflets; leaflets elliptic to cordate, the apex long-acuminate, the acumen filiform and densely pilose, the base acute to cordate, oblique, above densely yellow-pilose, especially on the costa and margin, or glabrescent and lustrous, the nerves impressed, beneath even and densely pilose, the nerves prominent, the upper pair elliptic to obvate, $11-16 \mathrm{~cm}$ long, $5-7 \mathrm{~cm}$ wide, the intermediate lanceolate, the basal pair cordate, $2.5-4.0 \mathrm{~cm}$ long, $1.5-2.0$ cm wide, the petiolules less than 1 mm long, densely ferrugineous-pilose; rhachis winged, 2-9 cm long, closely pilose along the midrib, the wings elliptic, each about 4 mm wide, sparsely pilose, the acumen linear, up to 15 mm long, pilose, the glands clearly stipitate, 4 mm long, glabrous; petiole short, slightly winged, $1.0-1.5 \mathrm{~cm}$ long, pilose; stipules triangular, cordate, acuminate, $15-20 \mathrm{~mm}$ long, pubescent, persistent. Inflorescences axillary, solitary or 2-3; peduncle terete, 1-2 cm long, densely pilose; rhachis $1-4 \mathrm{~cm}$ long, the bracteoles lanceolate, $15-18 \mathrm{~mm}$ long, persistent. Flowers congested, sessile; calyx tubular, $10-16 \mathrm{~mm}$ long, striate, pilose to glabrescent, the teeth acute, 3-6 mm long, pilose; corolla tubular, deeply lobed, $20-27 \mathrm{~mm}$ long, yellow-sericeous, the lobes acute, $4-9 \mathrm{~mm}$ long; staminal tube included. Legume flat, oblong, apiculate, $15-30 \mathrm{~cm}$ long, $4-5 \mathrm{~cm}$ wide, 0.5 cm thick, densely fulvous-pilose to glabrous in age, the margins elevated.

Highlands of central Costa Rica, 600-1400 m elevation.
Vernacular name: guabo amarillo, guabo peludo (Costa Rica).
Costa Rica: alajuela: La Palma, San Ramón, Brenes 6268 (CR, F), 6820 (CR, F), 17163 (CR, F) ; Zapote, San Carlos, A. Smith 1307 (F, NY), 2655 (MO). cartago: Cartago, Torres 98 (F); Las Vueltas, Tucurrique, Tonduz 12928 (GH, US); Orosi, Pittier s. n. (NY); Turrialba, Córdoba 34 (IAIAS), 97 (IAIAS), León 3921 (MO, IAIAS). sAN JOSE: La Palma. Standley 38076 (US).

Inga tonduzii is especially noteworthy for its short and pilose inflorescences congested in the axils of the leaves and its large pilose fruits. It is often seen in the coffee groves, among other common species, although its size and slow growth make it unsuitable as a shade tree.

Series 12. tetragonae Pittier, Contr. U. S. Nat. Herb. 18: 205, 1916.
Trees; branchlets terete to angulate, sparsely pilose to glabrous. Leaves large, the folioles sparsely pubescent to almost glabrous; rhachis winged to marginate or terete, the glands small and cupuliform; stipules ovate, sparsely pilose, persistent. Inflorescences shortly pedunculate, the bracts persistent. Flowers sessile; calyx tubular, striate, shortly pilose; corolla tubular-funnelform, white-sericeous. Legume tetragonal, the margins as wide as the valves, ridged, the valves flat with prominent borders.

Fig. 5. Inga tonduzii J. D. Smith
39. Inga sapindoides Willd. in L., Sp. Pl. 4: 1012, 1806. (Type Bredemeyer s.n.)
I. lindeniana Benth. in Hook., Lond. Jour. Bot. 4: 608, 1845. (Type Linden 726)
I. panamensis Seem., Bot. Voy. Herald 117, 1853. (Type Seemann 407)

Feuilleea sapindoides (Willd.) O. Ktze., Rev. Gen. 1: 189, 1891.
F. lindeniana (Benth.) O. Ktze., loc. cit. 188.
F. panamensis (Seem.) O. Ktze., loc cit.

Inga pittieri Micheli, Bull. Herb. Boiss. 2: 466, 1894. (Type Tonduz 4977)
I. hartii Urb., Symb. Ant. 1: 311, 1899. (Type Hart 845)
I. eggersii Harms in Engl., Bot. Jahrb. 42: 88, 1908. (Type Eggers 15075)
I. preussii Harms in Fedde, Rep. Sp. Nov. 13: 420, 1914 (Type Preuss 1386 photo)
I. purpusii Pittier, Contr. U. S. Nat. Herb. 18: 199, 1916. (Type Purpus 6811)
I. biolleyana Pittier, loc. cit. 207. (Type Tonduz 8391)
I. jimeneziana Pittier, loc. cit. 208. (Type Tonduz 8333)
I. rensoni Pittier, loc. cit. 209, 1916. (Type Renson 239)
I. rodrigueziana Pittier, loc. cit. (Type Heyde \& Lux 6095)
I. salvadorensis Britton \& Rose, N. Amer. Flora 23: 12, 1928. (Type Calderón 1828)
I. caracasana Pittier, Trab. Mus. Com. Venez. 263, 1929. (Type Pittier 9859)
I. grandifolia Pittier, loc. cit. 264 (Type Pittier 12621)
I. camuriensis Pittier, loc. cit. 266 (Type Pittier 13040)
I. antioquensis Britton \& Killip, Ann. N. Y. Acad. Sci. 35: 118, 1936. (Type Toro 858)
I. chardonii Britton \& Killip, loc. cit. 121. (Type Chardon 135)
I. panamensis Seem. var. pittieri (Micheli) Schery, Ann. Missouri Bot. Gard. 37: 203, 1950.
I. panamensis Seem. var. clavata Schery, loc. cit. 204. (Type von Wedel 672)
I. panamensis Seem. var. rodrigueziana (Pittier) Schery, loc. cit. 205.
I. alotopetiola Schery, loc. cit. 206. (Type Cooper \& Slater 65)

Trees 6 to 15 m tall; branchlets terete, on the new growth with a short and ferrugineous pubescence, in age glabrate and densely lenticellate. Leaves with 2-5 (generally 3-4) pairs of leaflets; leaflets chartaceous to membranaceous, broadly elliptic to lanceolate, the apex obtuse to acute, or shortly and abruptly acuminate, the base acute to rounded, often emarginate, above bright green, yellow-tomentose or scabrous to completely glabrous, the costa prominent and more pubescent, the lateral nerves ascending, slightly prominent to sunken, beneath paler, densely tomentose to glabrescent, the costa and lateral nerves prominent, the tertiary nervation transverse and conspicuous, the upper pair elliptic to obovate, strongly cuneate towards the base, often oblique, $9-20 \mathrm{~cm}$ long, $5-8 \mathrm{~cm}$ wide, the lower pair lanceolate, $5-12 \mathrm{~cm}$ long, $3-6 \mathrm{~cm}$ wide, the petiolules short and thick, $1-3 \mathrm{~mm}$ long, densely pilose; rhachis commonly winged only in the upper interfoliolar sections, or terete, $7-19 \mathrm{~cm}$ long, the wings elliptic or cuneate, the midrib prominent, densely pilose to glabrous, the glands obsolete to markedly pedicellate, crateriform to patelliform, $1-2 \mathrm{~mm}$ in diam, glabrous, with a wide and shallow pore, the terminal appendix linear-lanceolate, $5-8 \mathrm{~mm}$ long, pilose, caducous; petiole terete or marginate, $2-4 \mathrm{~cm}$ long, pubescent to glabrate; stipules ovate to lanceolate, up to 10 mm long, 8 mm wide, striate, densely pilose to glabrescent, persistent. Inflorescences 1-3, generally lateral from defoliated nodes and subtended by a pair of stipules, rarely terminal; peduncle terete, stout, 1-6 cm long, striate, pilose; rhachis 1-3 cm long, the bracts oblanceolate to spathulate, $8-15 \mathrm{~mm}$ long, striate, pilose; rhachis $1-3 \mathrm{~cm}$ long, the bracts oblanceolate to spathulate, 8-15 mm long, tomentose, persistent. Flowers sessile, distant or congested; calyx tubular, 9-17 mm long, striate, sparsely greenish-pilose to glabrate, the teeth acute to subulate, often irregular, 4-6 mm long, densely pilose; corolla tubular, dilating above, $18-30 \mathrm{~mm}$ long, appressed-pilose, the lobes $3-4 \mathrm{~mm}$ long; staminal tube included, the filaments about $4-5 \mathrm{~cm}$ long; ovary oblongoid, sulcate, the style $4-6 \mathrm{~cm}$ long, the stigma discoid. Legume tetragonal, $11-30 \mathrm{~cm}$ long, glabrous or sparsely pilose, the apex ending in a short and acute acumen, the base rounded, the margins $1.5-$ 2.5 cm wide, with longitudinal ridges and flaring borders, the valves $2-3 \mathrm{~cm}$ wide, flat, concave when young, at maturity convex; seeds $16-24$, oblong, surrounded by a thin aril.

Mexico (Oaxaca) to Panama; Trinidad and Tobago. (South America.)
Vernacular names: tama-tama (British Honduras-Gentle); cushin (Guate-mala-Steyermark); shalum (Guatemala—Standley); cuajiniquil (Salvador-Standley); guabo cuabrado (Costa Rica).

[^2]Record 47 (US); Motagua Valley, Record \& Kuylen 70 (NY, US); Quiriguá, Standley 24013 (GH, NY, US); Sto. Tomas, Escobas, Steyermark 39218 (F). Jalapa: El Rancho, Kellerman 7670 (F, NY). Quezaltenango: Colomba to Asintal, Standley 87889 (F); Santa María de Jesús to Calahuaché, Steyermark 33851 (F). retalhuleu: Retalhuleu, Standley 88697 (F) ; Río Samalá, Shannon 557 (US); San Felipe, Holway 719 (US). sacatepequez: Barranco Hondo, Standley 60269 (F). santa rosa: Las Viñas, Heyde \& Lux 6095 (F, GH, US). without locality: Lewton 378 (US).

Salvador: la libertad: Sta. Tecla, Levy 785 (EAP), Williams \& Molina s. n. (F). san salvador: San Salvador, Calderón 117 (GH, US), 171 (GH, NY, US), 1454 (GH, US), 1828 (NY), Preuss 1386 (photo) (GH, MO), Renson 239 (US), Standley 19109 (GH, MO, US), 19198 (GH, US), 20560 (GH, US), 23088 (GH, NY, US), 23641 (GH, NY, US). san vicente: Apastepeque, Standley 21342 (GH, US). sonsonate: Armenia, Standley 23462 (GH, US); Izalco, Pittier 1974 (US), Standley 21803 (GH, US). without locality: Calderón 2591 (F); Carlson s.n. (F).

Honduras: atlantida: La Ceiba, Yuncker, Koepper \& Wagner 8569 (F, GH, NY, US); Tela, Standley 56845 (F, NY, US). Morazan: Montaña Zanquín, Molina 2980 (F).

Nicaragua: carazo: Diriamba, Greenman \& Greenman 5825 (MO); Jinotepe, Standley 8449 (F). granada: Volcán Mombacho, Baker 135 (GH, MO, NY). zelaya: Braggman's Bluff, San Antonio, Englesing 159 (F).

Costa Rica: alajuela: Nuestro Amo, Inst. Phys-geogr. C. R. 16915 (K, US); San Ramón, Brenes 13507 (CR, F, IAIAS); Villa Quesada, A. Smith 1612 (EAP, F), 1891 (EAP, F, NY). cartago: Juan Viñas, Cook \& Dolye 389 (US); La Gloria, Pittier 16364 (US); Las Vueltas, Tucurrique, Tonduz 13055 (GH, NY, US); Río Colorado, Turrialba, Tonduz 8333 (CR); Turrialba, León 3922 (IAIAS), Pittier 9041 (CR, US), Tonduz 8391 (CR, US). guanacaste: Tilarán, La Tejona, Standley \& Valerio 45784 (NY, US). heredia: Heredia, León 1497 (IAIAS); La Bermúdez. León 3900 (IAIAS); San Francisco, León 3812 (IAIAS); San Pablo, León 3934 (IAIAS); Santo Domingo, Escheverria 317 (F) 318 (F). limon: Cairo, Monte Cristo, Standley ध Valerio 48539 (US). puntarenas: Palmar Norte, Allen 5785 (EAP, F); Río Ceibo, Tonduz 4977 (CR); Sto Domingo, Golfo Dulce, Tonduz 10030 (CR, F, GH, NY, US). san Jose: San Francisco, Guadalupe, Tonduz 17957 (F, GH, NY, US). without locality: Inst. Phys-geogr. C. R. 16916 (US).

Panama: bocas del toro: Almirante region, Cooper \& Slater 65 (US); Changuinola, Cooper \& Slater 108 (F, NY, US), Dunlap 523 (F, US); Water Valley, von Wedel 672 (GH, MO), 849 (GH, MO, US), 1822 (MO), 2749 (GH, MO, US). canal zone: Barro Colorado Island, Avilés 22 (F), Bailey \& Bailey 410 (F), Chickering s. n. (F), Kenoyer 368 (US), Killip 40017 (MO, US), Shattuck 273 (F), 743 (F), Standley 40992 (US), Wetmore © Abbe 34 (F, GH), C. L. Wilson 71 (F), Woodworth \& Vestal 329 (F), 374 (F), 737 (F), Zetek 3458 (F), 3668 (F), 4398 (F, MO); Daríen Station, Standley 31610 (US); Empire to Mandinga, Piper 5112 (US); Las Cruces, Seemann 407 (GH); Quebrada La Palma, Dodge \& Allen 17340 (F, GH, MO, US); Summit, Harvey 5180 (F). chiriqui: San Félix, Pittier 5452 (US). cocle: Bismarck, above Penonomé, R. S. Williams 489 (NY) darien: Cituro, R. S. Williams 673 (NY).

Trinidad: without locality, Ex. Herb. Trin. Bot. Gard. 845 (F), Hart 895 (F).
Tobago: Craig Hall, Broadway 4355 (F).
The long synonymy of I. sapindoides is more the result of detailed work on unstable characters than the existence of determinable variants. In fact no clearcut entities could be delimited in the available material, and it seems that perhaps the best rank for some of them is a varietal status, as assigned to certain variants by Schery (Ann Missouri Bot. Gard. 37: 188-225, 1950).

In the whole range of variation some trends may be detected although they lack a firm geographic correlation; the plants of Mexico, Guatemala and Salvador are in general more hairy, while those in Panama, northern South America and Trinidad are often quite glabrous; the length of the calyx and shape of the leaflets are highly variable in the same specimen. A considerable work on the fruit characters shows that certain areas in Costa Rica offer as much variability as
the whole range. The cultivated plants, on the other hand, show a remarkable uniformity, but they may come from a reduced number of progenies.

The most outstanding variant in the area occurs in the Atlantic side of Nicaragua, Costa Rica and Panama, and has been called I. biolleyana and I. panamensis var. clavata; its main characters are the narrowly winged to terete foliar rhachises, the obovate leaflets and elongate corollas. Transitional stages towards other types are frequent and at present it seems scarcely more than a variety.

It is noteworthy to observe that the different synonyms of this species, enumerated above, fall under three different series in the revisions of Pittier. This is partially due to a lack of correlation between the fruit and floral characters, and perhaps also to the poor preservation of some specimens. In résumé it seems more appropriate, until field studies could clarify the validity of the entities, to consider I. sapindoides a highly variable species than to accord specific status for the numerous segregates, in which case scores of new species should yet be described based on comparable variants.

Inga sapindoides is often planted as a shade tree in the coffee-growing areas; it has a broad spreading crown, large and well dispersed leaves, and its size is quite favorable to pruning. Its fruits are of rather low quality.

Series 13: inga

Ser. Sulcatae Pittier, Contr. U. S. Nat. Herb. 18: 210, 1916.
Trees; branchlets terete or angulate, pilose to glabrate. Leaves large, pilose, the rhachis terete or winged, the glands crateriform. Flowers small to medium size; calyx tubular, pubescent; corolla tubular, appressed-pilose. Fruit subterete, the marginal sides broader than the valves, deeply sulcate, often giving a twisted, ropelike appearance to the legume.

This group includes mostly the species of the § inga of Bentham and constitutes the part of the genus where the variability has reached its highest complexity. The definition of the species becomes very difficult owing to the overlapping of the characters.

It includes in the first place a group of species centering around I. vera, I. edulis and I. oerstediana. This group is more developed in Mexico and Colombia than elsewhere. In the former country some morphological variants have been described as species, which in the present treatment are reduced mostly under I. vera.

A second group is formed by three species without any clear relationship with the first. They are I. pauciflora, I. brenesii and I. coclensis. The scanty material available for this latter group does not permit any clear idea of its variability.
SPECIES . . . 40-47
a. Rhachis winged (terete in some specimens of I. oerstediana).
b. Branchlets, leaves and inflorescences densely ferrugineous-hirsute.
c. Corolla $12-16 \mathrm{~mm}$ long; flowers not congested. Panama40. I. pauciflora cc. Corolla $20-23 \mathrm{~mm}$ long; flowers on short rhachises. Costa Rica 41. I. brenesir
bb. Branchlets, leaves and inflorescences cinereous-tomentose to glabrescent (often ferrugineous-tomentose in I. oerstediana).
d. Inflorescences spiciform; flowers sessile to very shortly pedicellate.
e. Calyx $3-6 \mathrm{~mm}$ long; legume $8-24 \mathrm{~cm}$ long; leaflets oblong to obovate, in 3-4 pairs. Mexico to Panama 42. I. oerstediana
ee. Calyx 8-19 mm long.
f. Legume $40-120 \mathrm{~cm}$ long; leaflets oblong to lanceolate, in $4-6$ pairs; bracts lanceolate, $4-6 \mathrm{~mm}$ long. Honduras. Costa Rica to Panama
43. I. edulis
ff. Legume $10-32 \mathrm{~cm}$ long.
g. Bracts ovate-oblong, 9-14 mm long; leaflets obovate to lanceolate, generally in 3-4 pairs. Mexico.
44. I. latibracteata
gg. Bracts lanceolate, $3-9 \mathrm{~mm}$ long; leaflets elliptic to lanceolate, generally in 4-7 pairs. Greater Antilles; Mexico to Panama ...45. I. vera
dd. Inflorescences corymbiform; flowers always with well developed
pedicels. Guadeloupe to Trinidad ...46. I. ingoides
aa. Rhachis terete. Panama
47. I. coclensis
40. Inga pauciflora Walp. \& Duchass., Linnaea 23: 746, 1850. (Type Duchassaing s.n.)

Small trees; branchlets terete, striate, densely ferrugineous-pubescent, in age glabrate, the internodes short. Leaves with 3-4 pairs of leaflets; leaflets lanceolate to ovate, acute or acuminate, the base acute to obtuse, asymmetric, above ap-pressed-yellow-pilose when young, in age glabrate and lustrous, the nerves deeply impressed, beneath densely yellow-pilose, the nerves prominent, the upper pair lanceolate-elliptic to broadly elliptic, $9-13 \mathrm{~cm}$ long, $4-7 \mathrm{~cm}$ wide, the basal pair markedly ovate, $2-5 \mathrm{~cm}$ long, $1-2 \mathrm{~cm}$ wide, the petiolules less than 1 mm long, conic densely ferrugineous-pubescent; rhachis winged, 3-9 cm long, ferrugineouspubescent, the glands shortly stipitate, glabrous, retuse; petiole terete, $0.5-1.5 \mathrm{~cm}$ long, pubescent; stipules ovate, 4 mm long, ferrugineous-pubescent to glabrous, deciduous. Inflorescences solitary or geminate, axillary or terminal; peduncle slender, $1.5-2.5 \mathrm{~cm}$ long, densely ferrugineous-pubescent; rhachis hairy, $1-3 \mathrm{~cm}$ long, the bracts, obovate, up to 2 mm long, subpersistent. Flowers sessile; calyx tubular-funnelform, $8-11 \mathrm{~mm}$ long, striate, densely yellow-pubescent, the teeth acute, about 2 mm long, corolla tubular, $12-16 \mathrm{~mm}$ long, slightly spreading, ap-pressed-pilose; staminal tube included. Legume (immature) terete, curved, up to 14 cm long, 1 cm wide, densely ferrugineous-pilose, ending in a sharp point.

Lowlands of central Panama, apparently common in forests and clearings.
Panama: canal zone: Ancon Hill, R. S. Williams 32 (NY, US); Barro Colorado Island, Bangham 462 (F), Shattuck 1067 (F), Starry 153 (F), Woodson \& Schery 969 (MO, US), Zetek 3740 (F), 3907 (F, MO); Chiva-Chiva trail, Piper 5725 (US). panama: Chorrera to Capira, Zetek 3927 (F, MO); Panama, Duchassaing s. n. (GH). veraguas: Santa Fé, Allen 4417 (MO).

Bentham (Trans. Linn. Soc. 30: 627, 1875) reduced I. pauciflora to synonymy with I. vera, basing this assumption on the Duchassaing collection alone. Pittier (Contr. U.S. Nat. Herb. 18: 214, 1916) reinstated its specific value, and put it
among his euinga-sulcatae. In this series it does not have any close allies, but the fruit and flower characters do not leave any doubt about its place in the series inga (i.e. sulcatae Pittier).
41. Inga brenesir Standley, Publ. Field Mus. Nat. Hist., Bot. Ser., 18: 495, 1937. (Type Brenes 5121)

Trees 5 to 8 m tall; branchlets angulate, densely ferrugineous-tomentoce, lenticellate. Leaves with 3 pairs of leaflets; leaflets obovate to elliptic, coriaceous, the margins revolute, the apex acute to mucronate, cuneate at the base, above lustrous, glabrous, but sparsely pilose along the impressed nerves and on the margin, beneath dull, dark, pilose, the nerves very prominent, the upper pair obovate $9-13 \mathrm{~cm}$ long, $4-8 \mathrm{~cm}$ wide, median and lower pairs elliptical, sometimes asymmetric, the basal pair $5-7 \mathrm{~cm}$ long, $2-3 \mathrm{~cm}$ wide, the glands small, shortly stipitate, glabrous; petiole angulate, sometimes winged, $1.5-2.5 \mathrm{~cm}$ long, densely ferrugineous-pubescent; stipules ovate, short, 3-4 mm long, persistent. Inflorescences axillary; peduncle terete, $2-4 \mathrm{~cm}$ long, striate, densely ferrugineous-pilose; rhachis $1.0-1.5 \mathrm{~cm}$ long, the bracts rhombic, acute, about 4 mm long, pubescent. Flowers sessile, congested, giving an umbellate appearance to the inflorescences; calyx tubular, 9-12 mm long, densely ferrugineous-pubescent, the teeth short and obtuse; corolla tubular-funnelform, $20-23 \mathrm{~mm}$ long, densely pilose, the lobes $3-6 \mathrm{~mm}$ long; staminal tube included; ovary thick, glabrous. Legume unknown.

Wet forests of the central highlands of Costa Rica.
Vernacular name: guabo peludo (Costa Rica-Brenes).
Costa Rica: alajuela: La Palma, San Ramón Brenes 5121 (CR, F), 4988 (CR, F, IAIAS).

Inga brenesii is placed in the series inga on the basis of its similarity to I. pauciflora in foliar and floral characters, since its fruit is unknown. The thick ovary also suggests that the legume may be subterete, and according to the other characters it is difficult to place in any other series.
42. Inga oerstediana Benth. ex Seem., Bot. Voy. Herald 117, 1853. (Type Oersted 12)

Feuilleea oerstediana (Benth.) O. Ktze., Rev. Gen. Pl. 1: 188, 1891.
Inga eriorhachis Harms in Fedde, Rep. Sp. Nov. 13:525, 1915. (Type Tonduz 1214)
I. cobanensis Pittier, Contr. U. S. Nat. Herb. 18: 188, 1916. (Type Tuerckheim 11630)
I. tuerckheimii Pittier, loc. cit. 192. (Type Tuerckheim 1214)
I. edulis Mart. var grenadensis Urb. in Fedde, Rep. Sp. Nov. 15: 307, 1918 (ex char.; Type Eggers 6384, not seen)
I. culagana Britton \& Killip, Ann. N. Y. Acad. Sci. 35: 115, 1936. (Type Killip \& Smith 20165)
I. pamplonae Britton \& Killip, loc. cit. 119. (Type Killip \uplus Smith 19777)
I. chartana Britton \& Killip, loc. cit. (Type Killip \& Smith 19088)
I. chiriquensis Standley, Publ. Field Mus. Nat. Hist., Bot. Ser., 22: 78, 1940. (Type Davidson 928)
I. edulis Mart. var. minutiflora Schery, Ann. Missouri Bot. Gard. 37: 109, 1950. (Type Allen 968)

Trees 6 to 18 m tall; branchlets terete or angulate, densely ferrugineous- or cinereous-tomentose. Leaves with 3-4 (rarely 5) pairs of leaflets; leaflets subchartaceous, oblong to obovate, the apex obtuse to shortly acuminate, the base rounded or cuneate, often oblique, above dull, sparsely pilose, the nerves slightly prominent and tomentose, beneath densely ferrugineous- or cinereous-tomentose, the lateral nerves straight, anastomosing close to the margin and with the tertiary nervation transverse and conspicuous, the upper pair elliptic to obovate, $8-22 \mathrm{~cm}$ long, $4-12 \mathrm{~cm}$ wide, the intermediate pair slightly smaller, often oblique, the basal pair ovate to lanceolate, $4-13 \mathrm{~cm}$ long, $3-8 \mathrm{~cm}$ wide (the dimension and shape of the leaflets are quite variable in the same branchlet), the petiolules conic, $1-2 \mathrm{~mm}$ long, densely tomentose; rhachis terete, subalate, or markedly winged, $7-22 \mathrm{~cm}$ long, densely tomentose on the midrib, the wings elliptic, each up to 1.5 cm wide (saccate at the base in some Guatemalan specimens), the glands large, patelliform to crateriform, circular or triangular, at the border with the rim fleshy and narrower at the sides; petiole terete or winged, $2-7 \mathrm{~cm}$ long, densely tomentose; stipules ovate, $2-3 \mathrm{~mm}$ long, pubescent, caducous. Inflorescences 1-4, axillary, fasciculate or paniculate on short axes; peduncle terete, stout, $1-4 \mathrm{~cm}$ long, densely ferrugineous- or cinerous-tomentose; rhachis $1-4 \mathrm{~cm}$ long, the bracts reniform to ovate, $1-4 \mathrm{~mm}$ long, caducous. Flowers sessile, not congested; calyx cupulatetubular, 3-6 mm long, densely tomentose, the teeth 1-2 mm long, often irregular; corolla tubular, spreading above, $9-15 \mathrm{~mm}$ long, appressed-pilose, the lobes acute, $2-3 \mathrm{~mm}$ long; staminal tube included to exserted, the filaments about $1.0-2.5 \mathrm{~cm}$ long; ovary oblong, glabrous. Legume terete, oblong, $8-24 \mathrm{~cm}$ long, $1.0-2.5 \mathrm{~cm}$ in diam, densely ferrugineous- or cinereous-tomentose, at maturity the margins rather straight.

Mexico to Panama; West Indies, from sea level to 1800 m elevation. (South America.)

Vernacular names: jaquinicuil (Mexico-Hinton); cushin (Guatemala-Standley); guama pachona (Honduras - von Hagen); cuajiniquil peludo (Costa Rica).

Mexico: guerrero: Minas, Pilas, Hinton 10746 (F, GH, K, MO, NY, US). oaxaca: Cafetal Concordia, Ll. Williams 9380 (F, MO); Ubero, Morton \& Makrinius 2496 (F, US).

British Honduras: Middlessex, Schipp 383, (F, GH, MO, NY, US); Stann Creek, Gentle 3020 (K, NY).

Guatemala: alta verapaz: Carchá, Chicoj, Standley 70045 (F); Cobán, Standley 69543 (F) ; Cobán to San Pedro Carchá Standley 90017 (F); Samac, NW of Cobán, Standley 89677 (F), 89708 (F, US) ; San José, SE of Tactic, Standley 69621 (F); Sepacuité, O. F. Cook 124 (US), Cook \& Griggs 50 (US), 227 (US), 228 (US), 620 (US); Tactic, Popenoe 781 (US), Standley 92509 (F); Tactic to Tamahu, Standley 71260 (F), 91364 (F). chimaltenango: Chimaltenango to San Martín, Jilotepeque, Standley 64478 (F). escuintla: Barranco Hondo, above Las Lajas, Standley 63873 (F). quezaltenango: Colomba, road to Asintal, Standley 87910 (F); San Lorenzo, El Cubo, L. O. Williams 13208 (F); Volc. Sta. María, Sta. María de Jesús to Calahuaché, Steyermark 33716 (F). sacatepequez: Cerro de La Cruz, Antigua, Standley 63336 (F); Dueñas, Standley 63131 (F, NY). suchitepequez: Mocá, Bequaert 56 (F, GH). province unknown: San Miguelito, Santa Rosa, Bernouilli E Cario 1252 (K); Esperanza, Maxon \& Hay 3355 (US).

Salvador: ahuachapan: Ataco, Standley \& Padilla 2733 (F). la libertad: Finca Germania, near Comasagua, Carlson 206 (F); Santa Tecla, Levy 786 (EAP). san salvador: Volc. San Salvador, Calderón 1564 (GH, US). santa ana: Finca Pilón, Los Naranjos, Williams, Molina \& Levy 15168 (F, EAP).

Honduras: atlantida: Lancetilla, Yuncker 4922 (F, MO); Tela, Standley 53601 (F, GH, MO, NY, US), 56548 (F), 56617 (F). colon: Tanjica, near Trujillo, Bangham 250 (F). el paraiso: Güinope, Standley \& Williams 4556 (F). Williams \& Molina 11993 (F, GH). morazan: La Montañita, Williams \& Molina 21669 (F, GH); La Montañita, above Suyapa, Williams 15745 (EAP, F, US). yoro: Pijol, Subirana, von Hagen 1117 (F, NY); Subirana, von Hagen छ von Hagen 1071 (F, NY).

Nicaragua: managua: Casa Colorada, Maxon, Harvey \& Valentine 7384 (US); Crucero, Standley 8221 (F); Managua, Garnier 1062 (US). zelaya: El Recreo, Standley 19126 (F), Lewis 38 (F).

Costa Rica: alajuela: La Tigra, San Carlos, Barquero 12 (IAIAS, MO); San Pedro, San Ramón Brenes 5495 (CR, F, IAIAS); Zarcero, A. Smith 121 (F, MO). cartago: Aguacaliente, Pittier 2372 (CR, US), Torres 82 (F); Cartago, Cook \mathcal{F} Doyle 19 (US) 20 (US); Dulce Nombre, Standley 35820 (US); Las Cóncavas, Pittier 16661 (GH, US); Las Vueltas de Tucurrique, Tonduz 12745 (CR, NY, US); Tres Ríos, León 1235 (CR); Turrialba, Holdridge 2549 (IAIAS), León 1533 (IAIAS). heredia: Barba, León 3926 (IAIAS); Heredia, León 1498 (IAIAS); Río Ciruelas, Tonduz 2236 (CR, US); San Francisco, León 3807 (IAIAS); Santo Domingo, Echeverría 316 (F). limon: Guácimo, United Fruit Co. 144 (US); Suerre, J. D. Smith 6491 (US). san jose: Belmira de Dota, Tonduz 11636 (CR, GH, MO, US) ; Candelaria, Oersted 12 (K), 4420 (F, K); Copey, Tonduz 11683 (CR, GH, K, NY, US); San Pedro de Coronado, M. Valerio 1737 (F); Santa María de Dota, Standley \& Valerio, 44123 (NY, US); Vueltas de Jorco, León 3828 (IAIAS), 3831 (IAIAS).

Panama: bocas del toro: Changuinola Valley, Dunlap 582 (F); Cricamola, G. P. Cooper $527 a(\mathrm{~F})$. canal zone: Barro Colorado Island, Bangham 395a (F), Baibey \& Bailey 345 (F), 670 (F), M. Brown 129 (F), Chickering 56 (F), Kenoyer 371 (US), Shattuck 426 (F), Standley 31236 (US), Starry 216, Wetmore \& Abbe 72 (F, GH), Woodworth \& Vestal 361 (F), Zetek 3578 (F), 3619 (F); Gamboa, Allen 1972 (GH, MO, NY, US); Gorgona, Pittier 2696 (F, GH, NY). chiriqui: Boquete, Davidson 536 (F, MO) 928 (F, MO), Pittier 3130 (NY, US); Cerro Punta, Allen 1573 (GH, NY, US). darien: El Real, Allen 968 (GH, MO, US).

Grenada: Ammandale, Broadway s. n. (F, NY); Balthazar, J. S. Beard 197 (MO); without locality, Eggers 6236 (US).

Tobago: The Widow, Three Flowers, Broadway 4659 (MO, NY, US).
The specific delimitation of I. oerstediana here offered includes some entities attributed up to now to I. edulis, which were separated from the former on the color of the indument alone. It seems now that they are forms occurring at different elevations and that plants from the cloud forest possess in general a thicker and ferrugineous indument while in those growing at lower elevations the hairs are cinereous and more sparsely distributed.

The species itself is quite variable and some of the entities among those reduced to synonymy are local variants: 1) Some populations of Guatemala, Salvador and Honduras that fall under I. cobanensis (commonly classified as I. micheliana) have somewhat smaller calyces and leaves than the typical plants, but intergrade well within the specific variability. 2) Plants from the highlands of Mexico, Guatemala, Costa Rica and Panama are very similar, corresponding to the typical population. Inga eriorhachis, in which the rhachis is completely terete, is a form occurring in Costa Rica, but it seems that rhachial parts are particularly variable in I. oerstediana. 3) Included in this species are two varieties, one from Grenada and Tobago (I. edulis var. grenadensis Urb.) and another from Panama (I. edulis var. minutiflora Schery). These seem to have no apparent relation to the typical populations of I. edulis that occur in South and Central America, but are close to the I. oerstediana complex, especially to those variants occurring in the lowlands.

In South America I. oerstediana is known definitely from Venezuela to Ecuador
but probably I. endlicheri (O. Ktze.) Macbride, described by Poeppig as I. fasciculata, and some specimens from northern Bolivia may belong to the same species.

As noted above, the separation of I. oerstediana and I. edulis in herbaria is rather confused. The study of many specimens and mass collections seems to clarify the two concepts as far as I. edulis var. typica is concerned. The striking differences are in calyx size, shape and number of leaflets, size of bracts and probably the length of the legumes, and do not offer any important overlapping between the typical populations of I. edulis and I. oerstediana.

Inga oerstediana is often planted in Central America as a shade tree in the coffee and cacao groves. The fruits, although edible, are of rather poor quality. Standley and Steyermark report the use of the leaves in Guatemala, to wrap "tamales" to which they impart a purplish tinge much admired by the local people.
43. Inga edulis Mart., Flora 20: Beibl. 113, 1837. (Based on Mimosa ynga Vell.).

Mimosa ynga Vell., Fl. Flum. Ic. 11, t. 3, 1827. (ex ic.)
Inga vera H.B.K., Nov. Gen. Sp. Pl. 6: 289, 1827, non Willd. (fide Bentham). I. ynga (Vell.) J. W. Moore, Bernice P. Bishop Mus. Occ. Pap. 10, 19: 6, 1934.

Trees 6 to 15 m tall; branchlets terete or angulate, densely tomentose. Leaves with 4-6 (generally 5) pairs of leaflets; leaflets subchartaceous, oblong to lanceolate, the apex acute, narrowly acuminate to mucronate, the base rounded, above minutely and sparsely pubescent to scabrous, the nerves slightly prominent and more pilose, beneath paler, sparsely pilose, the nerves prominent, the upper pair narrowly elliptic to rhombic, $8-18 \mathrm{~cm}$ long, $3-8 \mathrm{~cm}$ wide, the basal pair lanceolate, $3-7 \mathrm{~cm}$ long, $2-4 \mathrm{~cm}$ wide, the petiolule conic, $1-2 \mathrm{~mm}$ long, densely pilose; rhachis winged, $6-14 \mathrm{~cm}$ long, the wings cuneate, the glands patelliform to crateriform, the rim fleshy, thinner at the sides; petiole terete, $2-6 \mathrm{~cm}$ long, densely tomentose, the pulvinar section thicker; stipules broadly ovate, about 3 mm long, pilose, caducous. Inflorescences 1-6, axillary, paniculate; peduncle terete or angulate, rather slender, $2-6 \mathrm{~cm}$ long, striate, tomentose; rhachis $3-4 \mathrm{~cm}$ long, the bracts lanceolate, $4-6 \mathrm{~mm}$ long, caducous. Flowers sessile, distant on the lower part of the rhachis, congested above; calyx tubular, 7-9 mm long, cinereous-tomentose, the teeth obtuse, $1-2 \mathrm{~mm}$ long; corolla tubular, $14-20 \mathrm{~mm}$ long, appressed-pilose, the lobes acute, $2-5 \mathrm{~mm}$ long, spreading; staminal tube included to exserted, the filaments $2-3 \mathrm{~cm}$ long; ovary oblong, glabrous, the style about 3.5 cm long. Legume markedly sulcate, up to 120 cm long.

Honduras (cultivated?) to Panama. (South America.)
Vernacular name: guabo mecate (Costa Rica and Panama).
Honduras: Morazan: El Zamorano, Standley 13079 (F), 16086 (EAP, F).
Costa Rica: alajuela: La Paz, San Ramón, Córdoba 187 (IAIAS), 189 (IAIAS). cartago: Instituto de Ciencias Agrícolas, Turrialba, Córdoba 92 (IAIAS); La Dominica, Turrialba, León 3952 (IAIAS). heredia: La Bermúdez, León 3832 (IAIAS); San Francisco, León 3817 (IAIAS), 3818 (IAIAS). Limon: Shirores, Tonduz 9357 (CR, US). puntarenas: Boruca, Tonduz 4710 (CR); Térraba, León 1136 (CR), Tonduz 3825 (CR).

Panama: bocas del toro: Almirante, Cooper \& Slater 38 (US); Changuinola Valley, Dunlap 220 (F, MO); Chiriqui Lagoon, von Wedel 1000 (GH, MO); Water Valley, von Wedel 1096 (GH, MO).

Inga edulis is a South American species well known in Brazil as a fruit tree. It is doubtful whether this species is native in Central America, for apparently all collections come from trees close to old or new settlements. This Inga produces large fruit up to a meter long; nowhere in Central America, however, do they reach the size and quality as in South America. It is also commonly planted as shade trees in coffee and cacao fields, since it has a well spreading crown and produces large quantities of leaves which cover the ground and add considerable quantities of organic matter to the soil.

Inga edulis is exceedingly variable. In the same field where they are cultivated for shade, it is possible to detect individuals with small or large leaflets, with long or relatively short fruits, with dense or open foliage. It is also quite possible that hybridization among these individuals as well as with other species, like I. oerstediana, may be the factor that determines its high variability.

44. Inga latibracteata Harms in Fedde, Rep. Sp. Nov. 19: 64, 1923. (Type Pringle 8159)

I. sciadodendron Harms in Fedde, loc. cit. 62. (Type J. A. Purpus 279 photo)

1. zapacuanica Harms in Fedde, loc. cit. 63. (Type C. A. Purpus 3684)
I. endlichii Harms in Fedde, loc. cit. (ex char.; Type Endlich 1536, not seen)

Trees; branchlets terete, when young densely ferrugineous-tomentose, in age glabrescent and lenticellate. Leaves with 3-5 (generally 4) pairs of leaflets; leaflets elliptic to lanceolate, the apex acute to obtuse, generally shortly mucronate, the base obtuse to rounded or somewhat cordate, above scabrous-pilose, opaque, the nerves and costa slightly prominent and more pubescent, beneath ferrugineoustomentose, the lateral nerves markedly prominent, the upper pair cuneate-elliptic to obovate, $12-17 \mathrm{~cm}$ long, $5-9 \mathrm{~cm}$ wide, the lower pair lanceolate to elliptic, 5-7 cm long, $3-4 \mathrm{~cm}$ wide, the petiolules conic, $2-3 \mathrm{~mm}$ long, ferrugineous-tomentose; rhachis winged, $6-12 \mathrm{~cm}$ long, the wings elliptic and pubescent, the glands patelliform, sessile, $1-2 \mathrm{~mm}$ in diam; petiole often terete, rarely winged, $2-5 \mathrm{~cm}$ long, densely ferrugineous-tomentose. Inflorescences 1-3 per axil, rarely terminal; peduncle terete, tomentose, $3-5 \mathrm{~cm}$ long; rhachis 2-4 cm long, the bracts lanceolate to ovate, $7-12 \mathrm{~mm}$ long, pubescent, caducous. Flowers rather loose, sessile; calyx tubular, $7-12 \mathrm{~mm}$ long, tomentose, the teeth acute, 2-4 mm long; corolla tubular, spreading above, $12-20 \mathrm{~mm}$ long, appressed-pilose, the lobes acute, $3-4 \mathrm{~mm}$ long; staminal tube included to exserted. Legume (immature) subterete, $10-22 \mathrm{~cm}$ long, sulcate, densely ferrugineous-tomentose.

Highlands of Veracruz.
Mexico: veracruz: Jalapa, Pringle 8159 (F, GH, MO), C. L. Smith 1690 (EAP, NY), Schiede s. n. (GH); Mirador, J. A. Purpus 279 (photo NY); Misantla, Schiede s. n. (GH); Orizaba, Botteri 365 (GH); Zacualpán, C. A. Purpus 3684 (F, MO), 8765 (GH, MO, NY), 10698 (F, NY), 10700 (NY), 10964 (F), 14036 (F, NY).

Inga latibracteata is a highly variable species confined in geographic distribution to the highlands of Veracruz. The populations are so variable that the few specimens available are different from one another but intergrade in important
characters among themselves, and for this reason have been reduced into one species.

The limits of I. latibracteata are not clear. On one hand it merges into the vast complex of I. vera subsp. spuria, as in the case of the type of I. zapacuanica, while on the other hand it is closely related to the Central American I. oerstediana in the size and shape of the leaflets, flowers and pods, as well as in the ferrugineous tomentum found upon all parts of the plants. The striking variability may suggest a hybrid origin or that we are dealing here with immature species in process of evolution. It would be highly desirable to obtain population samples in order to ascertain the nature of this interesting problem.
45. Inga vera Willd. in L., Sp. Pl. 4: 1010, 1806. (Based on Mimosa inga L.)

Mimosa inga L., Sp. Pl. 1498, 1753, non Vell. (Based on Sloane, Hist. 2: 58, pl. 183, fig. 1, 1629)

Trees; branchlets terete, pubescent to glabrate, lenticellate. Leaves obovate to lanceolate, the apex rounded to acuminate, rarely mucronate, the base acute to rounded, above sparsely pilose, opaque, the nerves slightly prominent, beneath more densely pilose or tomentose, the nerves prominent, the upper pair obovate to narrowly elliptic, $3-22 \mathrm{~cm}$ long, $2-9 \mathrm{~cm}$ wide, the basal pair lanceolate, $2-12 \mathrm{~cm}$ long, $1-6 \mathrm{~cm}$ wide, the petiolules short, conic, $1-4 \mathrm{~mm}$ long, densely pilose; rhachis winged, $4-14 \mathrm{~cm}$ long, pubescent on the midrib, the wings elliptic or cuneate, the glands patelliform, circular or triangular in outline, less than 2 mm wide; petiole terete or winged, $2-4 \mathrm{~cm}$ long, pilose to glabrescent; stipules ovate to lanceolate, 3-7 mm long, caducous. Inflorescences axillary or terminal, 1 to many, fasciculate or paniculate; peduncle terete, $4-8 \mathrm{~cm}$ long, pubescent; rhachis $2-6 \mathrm{~cm}$ long, the lower flowers distant, congested above, the bracts reniform to lanceolate, $3-11 \mathrm{~mm}$ long, caducous or subpersistent. Flowers sessile to shortly pedicellate, few to many, distant or congested; calyx cylindric to turbinate, $9-18 \mathrm{~mm}$ long, $5-7 \mathrm{~mm}$ wide, pilose to tomentose, the pubescence ferrugineous to cinereous; corolla tubular, spreading above, $9-22 \mathrm{~mm}$ long, appressed-pilose; staminal tube included to exserted. Legume subterete, sulcate, straight or curved, 12-22 cm long, densely tomentose to glabrescent.

Mexico to Panama; Jamaica to Puerto Rico. (South America.)
Inga vera, the type species of the genus, is also the most complex within it. Its origin is probably South American. In the Greater Antilles minor variations are observed from one island to the other, but its main variants in this area also are found on the Continent. Within the whole range, from Mexico to Panama, it is possible to observe numerous variants, some of which have received specific rank. After long study the conclusion reached agrees with the old opinion of Bentham that despite the high variability, the different morphological types can be grouped under a rather small number of subspecific populations. Three of them are recognized here: one in the Greater Antilles, a second in western Mexico, and a third from eastern Mexico to Panama. (South America.)

The reduction under one species of the many types found, especially in

Middle America, has been done in the past by Harms, Taubert, J. D. Smith, etc., contrary to the view of Pittier who not only considered the Central American plants distinct from those of the Caribbean, but divided the former into several species. If these small units are accepted it will be necessary to multiply the number of species ad infinitum, and to recognize as such the many other variants that occur in the area.

Key to the Subspecies

a. Calyx cylindric, $10-14 \mathrm{~mm}$ long, $4-6 \mathrm{~mm}$ wide; leaflets of the upper pair broadly elliptic to obovate, sparsely pilose to almost glabrous. Jamaica, eastern Cuba, Hispaniola, and Puerto Rico ...45a. I. vera subsp. vera
aa. Calyx turbinate or subcylindric; leaflets of the upper pair narrowly elliptic or obovate to falciform, sparsely to densely pilose.
b. Calyx short and broad, the width at the mouth one half or more the length; floral peduncles less than 4 cm long, stout; bracts oval to reniform, less than 6 mm long; leaflets generally in 4 (2-5) pairs; pubescence of the branchlets, leaves and flowers, ferrugineous. Highlands of Mexico, from Sinaloa to Morelos and Chiapas45b. I. vera subsp. eriocarpa
bb. Calyx elongate; floral peduncles slender and long, 5-7 cm long; bracts lanceolate, $6-9 \mathrm{~mm}$ long; leaflets generally in $6(5-9)$ pairs; pubescence of the branchlets, leaves and flowers commonly cinereous (or ferrugineous in plants found at high altitudes). Mexico: Coahuila and Tamaulipas to Tabasco on the eastern side, lowlands of Guerrero to Chiapas in the western side; Guatemala to Panama 45c. I. vera subsp. spuria

45a. Inga vera Willd. subsp. vera.
I. lamprophylla C. Wright in Benth., Trans. Linn. Soc. 30: 627, 1875, nom. nud. pro syn. (Type Wright, Parry \& Brummel 68)
Feuilleea inga (L.) O. Ktze., Rev. Gen Pl. 1: 184, 1^91.
Inga vera Willd. subsp. lamprophylla (C. Wright) Pittier, Contr. U. S. Nat. Herb. 18: 216, 1916.
I. vera Willd. subsp. portoricensis Pittier, loc. cit. 217. (Type Heller 4471)
I. inga (L.) Britton, Fl. Bermuda 170, 1918.
I. vera Willd. var. lamprophylla (C. Wright) Macbride, Contr. Gray Herb. n.s. 59: 1, 1919. I. vera Willd. var. portoricensis (Pittier) Macbride, loc. cit.

Trees; branchlets terete, striate, ferrugineous-tomentose to glabrate, lenticellate. Leaves with 3-6 (generally 4-5) pairs of leaflets; leaflets broadly elliptic to lanceolate, the apex acute to long-acuminate, the base cuneate to rounded, above sparsely pilose to glabrescent, the nerves slightly impressed and more pilose, beneath sparsely and shortly pubescent to almost glabrous, the nerves prominent, the upper pair broadly elliptic to rhombic, $8-13 \mathrm{~cm}$ long, $4-6 \mathrm{~cm}$ wide, the basal pair lanceolate, $4-5 \mathrm{~cm}$ long, $2-3 \mathrm{~cm}$ wide, the petiolules about 1 mm long, densely pilose; rhachis winged, $6-4 \mathrm{~cm}$ long, tomentose on the midrib, the wings cuneate, the glands patelliform, sessile to very shortly stipitate, about 1 mm in diam; petiole terete, or winged above, $1-2 \mathrm{~cm}$ long, pilose, the pulvinus darker and thicker; stipules lanceolate, acute, $4-6 \mathrm{~mm}$ long, caducous. Inflorescences axillary or terminal, $1-4$; peduncle slender, $2-5 \mathrm{~cm}$ long, tomentose to glabrescent; rhachis $2-4 \mathrm{~cm}$ long, the bracts lanceolate, $3-4 \mathrm{~mm}$ long, caducous. Flowers sessile or very shortly pedicellate, distant in the lower part of the rhachis, congested in the upper part; calyx cupulate-tubular, $8-14 \mathrm{~mm}$ long, tomentose, the teeth acute,
$3-4 \mathrm{~mm}$ long; corolla tubular, dilating above, $14-17 \mathrm{~mm}$ long, appressed-pilose, the lobes acute to obtuse, $3-4 \mathrm{~mm}$ long; staminal tube included to slightly exserted, the filaments about 4 cm long. Legume sulcate, $10-15 \mathrm{~cm}$ long, $1-2 \mathrm{~cm}$ wide.

Jamaica, eastern part of Cuba, Hispaniola, Puerto Rico.
Vernacular name: guaba (Puerto Rico-Britton).
Jamaica: hannover: mouth of Río Grande, A. E. Wight 141 (F, NY). portland: Moore Park to Portland, Harris 6613 (US); Port Antonio, Fredholm 3204 (US), Hitchcock s. n. (MO). st. ann: New Ground, Harris 10364 (F, NY, US); New Grounds River, Britton 2494 (NY). sT. mary: Castleton, Fawcett 8013 (F, NY). sт. тномas: Bath, Britton 3489 (NY); Port Morant, Hitchcock s. n. (MO); Spring, St. Thomas, Harris 5406 (US); without locality: Alexander s. n. (NY), Griseb. Fl. W. Ind. 471 (GH), Hart 1025 (US), 1026 (US).

Cubs: oriente: Joturito, Ekman 16046 (US); San Juan Hill, Shafer 12420 (MO, NY, US); Santiago, Havard 109 (NY).

Haiti: artibonite: Ennery, Ekman 9669 (US); Gros Morne, E. C. Leonard 9825 (GH, US); Marmelade, E. C. Leonard 8351 (US), 8355 (US), Nash 686 (NY); Petit Rivière, Sweet 7 (US); St. Marc, E. C. Leonard 2952 (GH, NY, US); St. Michel de l'Atalaye, E. C. Leonard 7510 (NY, US), Miller 293 (US). Nord: Bayeux, near Port Margot, Nash 337 (F, NY). nord-ouest: Jean Rabel Leonard \& Leonard 13809 (GH, NY, US), 12677 (US); St. Louis du Nord, Leonard \& Leonard 14215 (US). ouest: Port-au-Prince, Jaeger 109 (GH, NY, US). without locality: Buch 317 (US).

Dominican Republic: alta gracia: Higuey, Taylor 392 (F, NY). azua: Azúa, Rose, Fitchell \& Russell 3987 (NY, US). barahona: Barahona, Fuertes 50 (NY, US); Paraíso, Abbot 1648 (US); Pedernales to Aceital, Howard \& Howard 8239 (GH) san Juan: El Cercado, Howard \& Howard 8667 (GH); Río Juan, Miller 1254 (US). la vega: Jarabacoa: Allard 14841 (US). puerto plata: La Cumbre, Raunkiaer 1251 (US). samana: Samaná, Wright, Parry \& Brummell 68 (GH, US); Sánchez, Abbott 78 (GH, US). sEibo: Jovero, Abbot 2544 (US). santo domingo: Santa Domingo, Schiffino 166 (GH); Haina, Farris 531 (US). without locality: Scarff s.n. (F), Prenleloup 146 (NY, US).

Puerto Rico: aguadllla: Maricao, without collector, (NY). arecibo: Utuado, Britton \& Cowell 402, (F, NY). guayama: Agua Buena to Caguas, Sintenis 2545 (US); Aibonito, Heller 867 (F, NY, US); Caguas, Underwood $\&$ Griggs 355 (US); Cayey, Kuntze 403 (NY). humacao: Rio Icaco, S of Naguabó, Shafer 3178 (NY, US), 3183 (NY); Sierra de Luquillo, Sintenis 1533 (US). mayaguez: Las Mesas, Holm 259 (F, GH, MO, NY); Mayagüez, Heller 4471 (F, GH, MO, NY), Otero \& Gregory 1018 (US), Sintenis 47 (GH); San Germán, Miller 1663 (US); Yauco, Sargent 520 (US). san juan: Bayamón, Stahl 215 (US); Río Piedras, Otero 227 (MO). province unknown: Monte Llano, Goll, Cook \& Collins 465 (US); Quebrada Averias, Goll, Cook \& Collins 330 (NY); El Duque, Stevenson 510 (US).

The variability of I. vera subsp. vera is rather reduced, although the plants present slight variations from island to island. This range, however, does not justify the creation of different entities. The most striking trends seem to be towards tubular calyces and broad leaflets, scarcely pubescent to almost glabrous in some Jamaican specimens. The plants in general are very similar to some collections from Mexico and Honduras; this fact, and their absence in the Lesser Antilles, seem to suggest that the Antillean plants came from the continent via Central America, and have developed their characteristics through a long isolation.

Linnaeus based his Mimosa inga partially on material from this area, described by Sloane, of which only a fruit is preserved. The illustration in the Hist. of Jamaica, pl. 183, fig. 1, 1629, is rather inaccurate, since it shows a terminal leaflet, but the fruit is in general well represented.

45b. Inga vera Willd. subsp. eriocarpa (Benth.) J. León, stat. nov.
I. eriocarpa Benth. in Hook., Lond. Jour. Bot. 4:615, 1845. (ex char.; Type Coulter s.n., not seen)
I. oophylla Riley, Kew Bull. 1923: 401, 1924. (Type González Ortega 250)

Trees; branchlets terete or angulate with short internodes, densely ferrugineoustomentose when young, glabrate and lenticellate in age. Leaves with 2-5 (generally 4) pairs of leaflets; leaflets subcoriaceous, obovate to broadly lanceolate, the apex acute to rounded, often curved, the base cuneate to rounded, above dull, gray to green when dry, covered with sparse, short and yellow hairs, the nerves slightly prominent and more pilose, beneath paler, densely to sparsely ferrugineoustomentose, rarely glabrous, the nerves prominent, the upper pair obovate to elliptic, generally $6-11 \mathrm{~cm}$ long, $2-5 \mathrm{~cm}$ wide, the basal pair lanceolate, about half the size of the upper pair; rhachis winged, $4-9 \mathrm{~cm}$ long, densely tomentose on the midrib, the glands sessile, patelliform, less than 2 mm in diam; petiole terete or winged, $1.5-4.0 \mathrm{~cm}$ long, the pulvinus conic and thicker. Inflorescences axillary or terminal; peduncle stout, less than 4 cm long, densely ferrugineoustomentose; rhachis about 3 cm long, the lower flowers rather distant, the upper congested, the bracts ovate to reniform, up to 6 mm long, densely ferrugineoustomentose, caducous. Flowers sessile to markedly pedicellate; calyx turbinate, broad, the width always more than half the length, $8-12 \mathrm{~mm}$ long, $6-8 \mathrm{~mm}$ wide at the base of the teeth, densely ferrugineous-tomentose; corolla tubular, well exserted, $14-22 \mathrm{~mm}$ long, appressed-pilose, the lobes obtuse, $5-6 \mathrm{~mm}$ long; staminal tube included, the filaments about 3 cm long. Legume sulcate, straight or curved, $12-22 \mathrm{~cm}$ long, $1-2 \mathrm{~cm}$ in diam, densely ferrugineous-tomentose.

Southern and western slopes of the central highlands of Mexico, from Durango and Sinaloa to Morelos and Chiapas.

Mexico: chiapas: San Vicente, Goldman 858 (US). durango: Sierra Tres Picos, Gentry 5317 (MO). guerrero: Acapulco, Palmer 250 (F, GH, MO, NY, US); Achotla, Reko 4911 (US); Coyuca, Hinton 5527 (MO, NY, US); Jaripo, Hinton 6483 (MO, US); Manchón, Mina, Hinton 9248 (F, GH, MO, NY, US), 9259 (F, GH, MO, NY, US), 10074 (F, GH, MO, NY) ; Placeres, Mina, Hinton 9089 (F, GH, MO, NY, US), 9997 (F, GH, MO, NY, US); San Luís de La Loma, Langlassé 932 (GH, US); Taxco, Abbot 100 (GH), 100a (GH), Lyonnet 668 (MO, NY, US); Tecpán, El Reparo, Galeana, Hinton 14125 (US). Jalisco: Guadalajara, Safford 1414 (US); La Palma, M. E. Jones 183 (MO, US); San Sebastián, Mexia 1842 (F, GH, MO, NY, US); Talpa to Mascota, Nelson 4042 (GH, US), Mexico: Acatitlán, Temascaltepec, Hinton 3159 (MO, US), 5572 (F), 6184 (MO, NY, US); Ixtapán, Temascaltepec, Hinton 6205 (F) ; Tejupilco, Temascaltepec, Hinton 3981 (MO, NY), 6232 (F, US), 7349 (MO, US) ; Temascaltepec, Hinton 5911 (F), 8977 (MO, NY, US). michoacan: Apatzingán, El Capire, Leavenworth 445 (F, GH); Coalcomán, Hinton 12942 (GH, NY, US) ; Hacienda Coahuayula, Emrick 22 (F); Los Reyes, Nelson 6844 (GH, US); Sta. Inés, Langlassé 34 (GH, US); Torrecillas, Coalcomán, Hinton 13718 (NY, US). morelos: Cuernavaca, Bilimek 936 (GH, NY, US), Froderstrom 甘 Hultén 456 (NY), Leavenworth 930 (F), Reko 4649 (US), Rose \& Hough 4361 (US); San Antón, Cuernavaca, Seler 4183 (GH). nayarit: Acaponeta, Lamb 536 (NY, US), Rose 1437 (GH, NY, US), Rose, Standley \& Russell 14181 (NY); Cortina, Gonzalez Ortega 14 (US); Esperanza, Mina, González Ortega 6660 (US); Ixlán, Viereck 1165 (US); La Labor, Collins \& Kempton 78 (US) ; Pedro Paulo, Rose 3328 (US); Río Grande, E of Santiago, Gregg 1060 (MO); Río San Pedro, vers. W de la Sierra, Diquet s. n. (NY); San Leonel, Gregg 978 (MO); Tepic, Gregg 987 (MO); Tuxpán, Viereck 1201 (US). SInaloa: Concordia, La Calera, Trejo 1109 (US); El Habal, González Ortega 5195 (US); Sierra Madre, Colomos, Rose 1701 (GH, K,

NY, US); San Ignacio, González Ortega 250 (K); Villa Unión, Rose, Standley 甘 Russell 13968 (GH, NY, US). without locality: Halsted 26 (NY), Kerber 428 (US); Mociño \& Sessé 3784 (F), Müller 708 (NY).

The most typical plants of this subspecies occur in the states of Morelos, Mexico, Guerrero and Michoacan, at altitudes well above 1000 m . They are characterized by a dense, soft, ferrugineous pubescence, rather small leaves, generally with five pairs of leaflets, and broad calyces; the flowers are frequently pedicellate. The material available comes from restricted and widely separate areas in the dissected slopes of the plateaus south of the Central Valley of Mexico. Its variability may be the result of geographic isolation or perhaps the influence of other species, as suggested by some aberrant specimens from an isolated locality in Jalisco (Mexia 1842).

Towards the north, on the western slopes of the Sierra Madre Occidental, the plants of Nayarit, Jalisco and Sinaloa are less typical, and some of them approach subsp. vera in many characters. The leaflets are small, elliptic to lanceolate-ovate or even obovate in the upper pair, the calyces longer than in the typical plants, and the pubescence less dense and ferrugineous. Some of these more glabrous plants with ovate leaflets have been called I. oophylla. It is interesting to note that in this area the genus reaches its most northern point, in the Sierra de Tres Picos, Durango; on the eastern side of the country this species reaches almost the same latitude in Coahuila, while it is not found in the intermediate areas, the vast and dry bolsons of northern Mexico.

45c. Inga vera Willd. subsp. spuria (Willd.) J. León, stat. nov.
I. spuria Willd. in L., Sp. Pl. 4: 1011, 1806. (ex char.; Type Humboldt \& Bonpland s.n. photo)
Mimosa spuria (Willd.) Poir. in Lam., Encycl. Suppl. 1: 40, 1810.
I. berteriana DC., Mém. Leg. 438, 1825 (fide Bentham). (Type Bertero s.n. photo)
I. mociniana G. Don, Gen. Syst. Pl. 2: 388, 1832 (fide Bentham). (Type Mociño s.n., not seen)
I. xalapensis Benth. in Hook., Lond. Jour. Bot. 4: 616, 1845. (Type Linden 671 photo)

Feuilleea spuria (Willd.) O. Ktze., Rev. Gen. Pl. 1: 189, 1891.
F. xalapensis (Benth.) O. Ktze., loc. cit.

Inga donnell-smithii Pittier, Contr. U. S. Nat. Herb. 18: 211, 1916. (Type J. D. Smith 2316)
I. fissicalyx Pittier, loc. cit. 213. (Type C. A. Purpus 1917)

Trees; branchlets terete or angulate, cinereous to ferrugineous-tomentose, lenticellate. Leaves with 5-9 (generally 6-7) pairs of leaflets; leaflets subcoriaceous, elliptic to lanceolate, obtuse to acuminate at the apex, rounded to obtuse at the base, above grayish when dry, sparsely pilose to scabrous, the nerves slightly prominent, beneath tomentose to glabrate, the prominent nerves more pubescent, the upper pair elliptic to falciform, $9-17 \mathrm{~cm}$ long, $3-4 \mathrm{~cm}$ wide, the basal pair lanceolate or ovate, about half to two thirds the size of the upper pair, the petiolules conic, $1-2 \mathrm{~mm}$ long, pilose; rhachis winged, $8-13 \mathrm{~cm}$ long, tomentose on the midrib, the wings cuneate, the glands small, patelliform, $1-2 \mathrm{~mm}$ in diam; petiole terete or winged, $0.5-1.5 \mathrm{~cm}$ long, tomentose, the pulvinus very short to obsolete; stipules lanceolate,

4-7 mm long, caducous. Inflorescences terminal or axillary, 1 to many spikes, fasciculate or paniculate; peduncle terete, slender, $4-7 \mathrm{~cm}$ long, tomentose; rhachis up to 5 cm long, the bracts lanceolate, $6-9 \mathrm{~mm}$ long, caducous. Flowers sessile to markedly pedicellate, the pedicels obsolete to 8 mm long; calyx turbinate, 11-19 mm long, cinereous to ferrugineous-pubescent, the teeth acute, $5-6 \mathrm{~mm}$ long; corolla tubular, flaring above, $15-22 \mathrm{~mm}$ long, the lobes obtuse, $4-6 \mathrm{~mm}$ long; staminal tube generally included. Legume sulcate when young, in age subtetragonal, the valves narrower than the margins, $8-30 \mathrm{~cm}$ long, $1-2 \mathrm{~cm}$ wide, densely cinereous or ferrugineous-tomentose.

Mexico (Guerrero and Coahuila) to Panama. (South America.)
Vernacular names: acotope (Veracruz-L1. Williams); cuje, shalun (Guate-mala-Standley \& Steyermark); guabo (Central America).

Mexico: chiapas: Chicomucelo, Matuda 4477 (NY); Escuintla, Matuda 22 (MO, NY, US) ; Escuintla, Esperanza, Matuda 17640 (F); Monserrate, C. A. Purpus 10311 (NY, US); Río Usumacinta, Reko 4131 (US). coahulla: Gómez Farías, Palmer 290 (F, GH, MO, NY, US). hidalgo: Huejutla, Moore 2905 (GH), Seler 894 (GH, US). oaxaca: Cuyamecalco, Conzatti 3487 (US); Puerto Angel to Pochutla, Nelson 2461 (GH, US); Rincon Antonio, Orcutt 3228 (F, GH, MO, US); San Juan Lalana, Schultes \& Reko 792 (GH); Tuxitán, Tapana, Seler 2044 (GH); Ubero, Ll. Williams 9186 (F, MO, US); Yaveo, Choapam, Mexia 9288 (F, GH, MO, NY). san luis potosi: Labra, Ciudad del Maíz, Seler 765 (GH); Micos Falls, Vines 3329 (US); Tamasopo, Cañon, Pringle 5045 (GH); Valles, Fisher 3361 (F, NY). tabasco: Achotal, Balancán, Matuda 3038 (F, NY); San Juan Bautista, Rovirosa 27 (US). tamaulipas: Tampico, Palmer 568 (GH, MO, NY, US); Río Sabinas, Meyer \mathcal{G} Rogers 2850 (MO). veracruz: Cabrestos, Liebmann 4429 (F); Colipa, Liebmann 4442 (F, GH, US); Córdoba, Bourgeau 2040 (GH, US); Dos Ríos, Mell 556 (NY, US); Fortuño, Ll. Williams 8515 (F), 8824 (F, MO, US), 8948 (F, MO, NY, US); Jalapa, Schiede 673 (GH, NY); Lake Catemaco, Nelson 425 (NY, US); Orizaba, Bilimek 127 (GH), Müller 2208 (NY) ; Pánuco, Palmer 362 (F, GH, MO, NY, US); Río de los Pescados, C. A. Purpus 10700a (MO, NY, US), 11110 (MO, NY); San Francisco, near Veracruz, C. L. Smith 1401 (EAP, NY); Santa Lucrecia, C. L. Smith 991 (EAP, GH, MO, NY, US); Tantoyuca, Ervenberg 10 (GH); Zacualpán, Purpus 1917 (F, GH, MO), 8625 (GH, MO, NY, US).

British Honduras: El Cayo, Bartlett 12992 (F, NY, US); Hope Creek, Schipp 135 (F, GH, MO, NY, US); Little Cocquericot, Lundell 4402 (US); Manatee Lagoon, Peck 374 (GH, K) ; Maskall, Gentle 1282 (F, GH, MO, NY); Middlessex, Schipp 293 (GH), 295 (F, MO, NY, US) ; Mussell Creek, east of Boomtown, O'Neill 8601 (F, GH, NY, US); Silk Grass Reserve, Record 18 (NY, US); Vaca, El Cayo, Gentle 2536 (F, MO).

Guatemala: alta verapaz: Gubilgüitz, Tuerckheim 7854 (GH, MO, NY); Semococh, Steyermark 45732 (F); Transvaal, C. L. Wilson 304 (F); without locality, Brigham s. n. (GH), Watson 213 (GH), 343 (GH). escuintla: Iztapa, J. R. Johnston 1168 (F); Río Guacalate, NW of Escuintla, Standley 89294 (F); Río Michatoya, SE of Escuintla, Standley 89200 (F) ; Río Michatoya, Standley 89202 (F) ; San Juan Mixtán, J. D. Smith 2317 (GH, US); San Vicente Osuna, Tonduz \& Rojas 48 (US). guatemala: Amatitlán, Kellermann 5058 (F), 6374 (F); Chinautla, Holway 486 (US); Guarda Viejo, J. D. Smith 2316 (GH, US). huehuetenango: Ciénega de Lagartero, Miramar, Steyermark 51550 (F). izabal: Boca del Cahabón, J. D. Smith 1673 (GH, NY, US); Golfete, Rowlee \& Rowlee 308 (NY, US) ; Los Amates de Quiriguá, Steyermark 38327 (F); Quiriguá, Standley 23842 (GH, MO, US), 24507 (GH, NY), 24557 (GH, MO, US), 72248 (F), 72314 (F), Río Izabal, Blake 7843 (US). Jalapa: Cerro Alcoba, Jalapa, Steyermark 32607 (F); Jalapa, Standley 76751 (F). Jutiapa: Jutiapa, Standley 75643 (F); Laguna dé Ayarza, Heyde \& Lux 3727 (GH, US); Trapiche Vargas to Asunción Mita, Steyermark 31793 (F). quezaltenango: Río Ocosito, J. D. Smith 2822 (US). peten: El Paso, Lundell 1505 (F, GH, MO, NY, US); Tikal, Bartlett 12650 (F). retalhuleu: Retalhuleu, Bernouilli \& Cario 1243 (K), Standley 66712 (F), 88666 (F), 88724 (F), 88784 (F, MO); Río Ocosito, W of Retalhuleu, Standley 88258 (F); Río Vil, W of Retalhuleu, Standley 88300 (F), 88328 (F). sacatepequez: without locality, Rojas 348 (US). santa rosa: Chiquimulilla, Standley 79177 (F); Río de Los

Esclavos, Heyde G Lux 3290 (GH, US). solola: Patahul, Kellermann 5883 (US). suchitepequez: Alotenango, S of Tiquisate, Steyermark 47803 (F); Sto. Domingo, S of Mazatenango, Standley 88898 (F). zacapa: Gualán, Deam 380 (GH, MO, NY, US), 6303 (GH, US); Rio Teculután, Steyermark 42136 (F). without locality: Lewton 401 (US).

Salvador: ahuachapan: Ahuachapán, Standley 20029 (GH, MO, NY, US). cabanas: San Nicolás, Calderón 1587 (US). la libertad: La Libertad, Standley 23236 (F, GH, MO, US). la union: Laguna de Maquigüe, Standley 20935 (GH, US); Zacatecoluca, Calderón 319 (GH, MO, NY). san miguel: San Miguel, Standley 21142 (GH, MO, US). san salvador: San Martín, Calderón 1897 (GH, US); San Salvador, Calderón 1565 (NY, US), Standley 22466 (GH, US); San Salvador-La Palma, Carlson 585 (F). san vicente: San Vicente, Standley 21228 (GH, US), 21674 (GH, US), Standley \& Padilla 3660 (F). santa ana: Metapán, Standley \& Padilla 3101 (F); San Miguel de Metapán, Carlson 765 (F), 847 (F). sonsonate: Acajutla, Standley 21931 (GH, US); Izalco, Pittier 1928 (US); Nahulingo, Standley 22047 (GH, US); San Antonio del Monte, Standley 22151 (GH, US). without locality: Calderón 68 (F).

Honduras: atcantida: Salado, Yuncker, Koepper \& Wagner 8333 (F, GH, MO, NY, US); Tela. Blake 7273 (US), Standley 54718 (F, US), 55146 (F, NY, US). comayagua: Comayagua, Standley \& Chacón 5750 (F), 5936 (F); El Banco, Valerio 2508 (F); Las Limas, Edwards 100 (F), 337 (F, US); Rio Chiquito, Standley \& Chacón 5221 (F); Rio Selán, Valerio 2844 (F); Rio Selguapa, Valerio 2563 (F); Siguatepeque, Allen 6191 (EAP), Edwards 587 (F, US), Standley 55950 (F, US), Standley \& Chacón 6101 (F), 6710 (F), Valerio 2673 (F), Yuncker, Dawson \& Youse 5529 (F, GH, MO). choluteca: Río Pespire, Williams \& Molina 15563 (F). el paraso: Güinope, Williams \& Molina 11528 (F, GH, MO), Williams, Molina \& Padilla 2079 (F). islas de la bahia: Roatán, Gaumer 87 (K). morazan: Caparrosa River, Standley 20538 (F), Williams \& Molina 11148 (F), 11887 F, GH, MO), 12711 (F, GH); Jicarito, Standley 21066 (EAP, F), Williams \& Molina 4027 (F); Jicarito River, Glassman 1695 (EAP, F); Las Mesas, Molina 312 (F); Monte de la Flor, von Hagen \& von Hagen 1131 (F, NY); Quebrade El Horno, Molina 831 (F); San Francisco, Williams \& Molina 12198 (F, GH); San Juan del Rancho, Standley 14327 (F); Santa Inés, Valerio 486 (F); Villa Nueva, Molina 84 (F); Zamorano, Standley 1835 (F, MO), 3993 (F), 4988 (F), Valerio 1153 (F). olancho: Juticalpa, Standley 17631 (F). yoro: Medina, Aguan River, Yuncker, Koepper \& Wagner 8621 (F, MO, NY).

Nicaragua: carazo: Jinotepe, Standley 8521 (F). chinandega: Ameya, Maxon, Harvey \& Valentine 7183 (US); Corinto, Greenman \& Greenman 5836 (MO). chontales: Juigalpa, Standley 9300 (F); La Libertad, Standley 9142 (F); Río San Juan, Oersted 4416 (F). granada: Granada, Baker 114 (GH, MO, NY, US), 595 (US), 837 (US); Oersted 4424 (F); Las Isletas, Oersted 4418 (F). jinotega: Jinotega, Standley 9692 (F). managua: Managua, Garnier 59 (F), 4153 (F), 4182 (F). rivas: San Juan del Sur, Torrey 5 (NY). zelaya: Braggman's Bluff, Englesing 226 (F); Escondido River, Long 180 (F); La Esperanza, Río Grande, Molina 2123 (F). without localtty: C. Wright s. n. (GH, US).

Costa Rica: alajuela: Carrilos de Poás, Brenes 20471 (F); Coyolar, Standley 39987 (US), 40055 (US), Wercklé s. n. (US); Zarcero, L. O. Williams 16564 (IAIAS). cartago: La Carpintera, Echeverria 404 (F), Stork 2111 (F). guanacaste: Bebedero, Brenes 12556 (F); Nicoya, Tonduz 13855 (CR, GH, K, NY, US); Salinas Bay, Pittier 2726 (CR, US); without locality, Oersted 4423 (F). Heredia: Echeverría, Pittier \& Tonduz 2515 (CR, US); Rio Virila, L. O. Williams 16047 (EAP, IAIAS). puntarenas: Buenos Aires, Tonduz 4988 (CR, US); Cascajal, Holm \& Iltis 220 (F); Pan de Azúcar, León 1236 (CR); Río Ceibo, Tonduz 3829 (CR). san Jose: Alajuelita, Echeverría 607 (CR, F); Desamparados, Biolley 1018 (CR, US); El General, Skutch 4695 (CR, F, MO, NY, US); Escazú, Standley 32340 (US); La Uruca, Pittier 358 (CR); La Verbena, Tonduz 9078 (CR, US); Las Pavas, Standley 36053 (US), 36072 (US); Río Tiribí, Pittier 4258 (CR); San Francisco de Guadalupe, Tonduz 8049 (US); San José, Biolley 56 (F), Greenman \& Greenman 5505 (MO), Standley 34817 (US), 39002 (US), 39008 (US); San Sebastián, Standley 32696 (US), 49287 (NY, US). without locality: Oersted 14 (GH).

Panama: canal zone: Chiva-Chiva trail, Maxon \uplus Harvey 6581 (US), Piper 5752 (US); Gatún, Hayes 78 (GH), 258 (NY); Río Agua Salud, near Frijoles, Piper 5866 (F, US); sabana of Panama, Pittier 2538 (GH, NY, US); Trinidad River, Pittier 3973 (F, GH, NY, US); Victoria Fill, Allen 1704 (GH, NY, US). cocle: LaPintada, Allen 518 (GH, MO); Penonomé, R. S. Williams 137 (NY, US), 334 (NY, US). chiriqu: Boquete,

Davidson 823 (F, MO). herrera: Ocú, Allen 4069 (MO). panama: Chepo, Hunter \& Allen 89 (F, GH, MO), Klug 16 (F, US); Juan Díaz, Allen 939 (F, GH, MO, US); Las Lajas, Allen 1608 (GH, MO, NY, US) ; Las Sabanas, Bro. Paul 178 (US); Las Sabanas to Matías Hernández, Standley 31825 (NY, US), 31871 (US), 31889 (US); San José Island, I. M. Johnston 630 (GH), 698 (GH), 1277 (GH); Monte Oscuro, Zetek 349 (F). veraguas Cañazas, Allen 160 (MO, US). without locality: Seeman 520 (GH), Hayes 1027 (NY, US).

A subspecific value is assigned here to I. spuria Willd. after comparing many specimens from Central and South America with the Antillean plants. (On the type sheet of I. spuria at Berlin, Urban wrote: "Ab I. vera Willd. certes non diversa"). As no important characters were found to separate the two entities, I follow an old idea of Bentham, who considered vera, spuria, and probably the uraguensis (which I did not examine) as subspecific concepts of a widely spread species, since intergradations occur in all directions and quite often morphological types that tend to have a local distribution, reappear isolated in other regions. Inga eriocarpa, for instance, has been reported from Colombia, I. vera from Guatemala, etc.

In southeastern Mexico, British Honduras and Guatemala, an interesting variant occurs that Pittier named I. fissicalyx; it appears also in Costa Rica and Panama. It is characterized by long calyces that often exceed the corolla, long peduncles and narrow, lanceolate, or falciform leaflets. The extreme of this entity is represented by Liebmann 4442 from Colipa, Veracruz. In Mexico it intergrades gradually towards other types and in Guatemala towards a peculiar type of the highlands, I. donnell-smithii Pittier, characterized for its ferrugineous-tomentose calyces; similar forms occur in Honduras, Costa Rica and Colombia (I. eriocarpoides Britton \& Killip). In southern Costa Rica and Panama some plants have pedicellate flowers, as was reported for the type of I. spuria.

46. Inga ingoides (Rich.) Willd. in L., Sp. Pl. 4: 1012, 1806. (ex char.)

Mimosa ingoides Rich., Act. Soc. Hist. Paris 1: 113, 1792. (Type Le Blond s.n., not seen) Inga merianae Splitg., Pl. Nov. Sur. 19, 1842 (fide Bentham). (Type Splitgerber s.n., not seen)
I. galibica Duchass. \& Walp., Linnaea 23: 747, 1850. (ex char.; Type Duchassaing 488, not seen)
Feuilleea ingoides (Rich.) O. Ktze., Rev. Gen. Pl. 1: 188, 1891.
Trees up to 22 m tall; branchlets terete or angulate, ferrugineous-tomentose to glabrate, lenticellate. Leaves with 3-5 (generally 3) pairs of leaflets; leaflets subcoriaceous, elliptic to lanceolate, rufescent when dry, the apex obtuse to acuminate, the base rounded, above dark, lustrous, pilose to glabrescent, the nerves slightly prominent and densely pilose, beneath paler, sparsely to densely pilose, the nerves very prominent, the upper pair obovate to cuneate-elliptic, $10-22 \mathrm{~cm}$ long, $6-9 \mathrm{~cm}$ wide, the lower pair elliptic to lanceolate, $3-7 \mathrm{~cm}$ long, $2-3 \mathrm{~cm}$ wide, the petiolules conic, $1-2 \mathrm{~mm}$ long, densely ferrugineous-tomentose; rhachis winged, $5-12 \mathrm{~cm}$ long, densely tomentose on the midrib, the wings well developed, cuneate or elliptic, the glands small, patelliform, less than 1 mm in diam; petiole terete, 1.5-2.5 cm long, densely ferrugincous-tomentose, the pulvinus darker; stipules elliptic, up to 7 mm long, glabrate, caducous. Inflorescences $1-4$ corymbiform racemes, axillary
or terminal; peduncle terete, slender, 2-8 cm long, ferrugineous-tomentose; rhachis irregular, sometimes thick, constricted, $1.5-3.0 \mathrm{~cm}$ long, the bracts ovate, about 2 mm long, caducous. Flowers markedly pedicellate, the pedicels $3-8 \mathrm{~mm}$ long, 1 mm in diam; calyx campanulate, $5-9 \mathrm{~mm}$ long, $4-5 \mathrm{~mm}$ wide, densely ferrugin-eous-tomentose, the teeth regular, obtuse to acute, $1-2 \mathrm{~mm}$ long; corolla tubular, deeply lobed, $10-16 \mathrm{~mm}$ long, appressed-pilose, the lobes obtuse, $4-5 \mathrm{~mm}$ long; staminal tube included, the filaments about 3 cm long; ovary oblong, sulcate, about 5 mm long, the style longer than the filaments. Legume terete, deeply sulcate when young, the marginal sides twice as broad as the valves, $12-35 \mathrm{~cm}$ long, densely ferrugineous-tomentose; seeds oblong, $1.0-1.5 \mathrm{~cm}$ long, 0.5 cm wide.

Guadeloupe to Trinidad. (South America, from Peru to the Guianas.)
Vernacular names: pois-doux poilu (Guadeloupe-Duss); pois-doux marron (Dominica-Beard); pois-doux gris (Martinique-Duss); cacolie (St. Lucia-Beard).

Guadeloupe: Matouba, Camp Jacob, Duss 3035 (NY, US); Morne Boucanier, Duss 3229 (NY, US), 3601 (NY, US).

Dominica: Bellevue, Eggers 644 (GH); Laudat, J. S. Beard 654 (MO); Layou, W. H. Hodge 610 (NY); Lisdora Estate, G. P. Cooper III. 183 (GH, NY); Rosalie Valley, Lloyd 707 (NY); Soufriere, Eggers 110 (US); without locality, Imray s. n. (GH).

Martinque: Case Pilote, Duss 1158 (NY); Lamantin, Hahn 665 (GH).
St. Lucia: Grand Magazin, P. Beard 1138 (GH, MO).
St. Vincent: Calvary, Eggers 6818 (US).
Trinidad: Arena Gov. Forest, Broadway s. n. (F); 5857 (MO); Arima, Eggers \& Rensch s. n. (US); Godineau River, Britton 2919 (GH); La Brea, Broadway s. n. (GH); Maqueripe, Britton, Britton \& Hazen 192 (GH, US); Port-of-Spain. Kuntze 899 (F, NY); St. Ann, Broadway 5116 (F, MO); Tabaquite, Broadway 9103 (MO); without locality, Sieber distr. 171 (GH, MO), Trin. Bot. Gard. s. n. (US), 2842 (US).

Inga ingoides has a wide distribution in South America and may have reached the Lesser Antilles through Venezuela via Margarita Island. It is closely related to I. vera and I. edulis, and some few collections show certain intergrading between these species and the first. Many of the specimens attributed to I. vera have pedicellate flowers but lack the short, campanulate calyx and large leaves of I. ingoides.
47. Inga coclensis Pittier, Contr. U. S. Nat. Herb. 18: 211, 1916. (Type R. S. Williams 405)
Trees; branchlets terete, striate, densely ferrugineous-tomentose. Leaves with 4-8 pairs of leaflets; leaflets elliptic to lanceolate, the apex long-acuminate, the base obtuse to rounded, above lustrous, shortly and sparsely pilose, the nerves impressed and more pubescent, beneath densely pubescent, the hairs yellow, short and curved, the nerves very prominent, the upper pair lanceolate-elliptic, often asymmetric, $9-21 \mathrm{~cm}$ long, $2.5-8.5 \mathrm{~cm}$ wide, the basal pair lanceolate, $4-8 \mathrm{~cm}$ long, $3-5 \mathrm{~cm}$ wide, the petiolules conspicuous, terete, up to 5 mm long, tomentose to glabrescent; rhachis terete, stout, $17-29 \mathrm{~cm}$ long, densely ferrugineous-tomentose, the glands shortly stipitate, crateriform, up to 2 mm in diam, the rim glabrous; petiole terete, thicker at the pulvinar section, $2-4 \mathrm{~cm}$ long, tomentose to glabrescent; the stipules minute, ovate, less than 2 mm long, pubescent, deciduous. Inflorescences axillary or terminal, solitary or in groups of 2-3; peduncle terete, 3.0-3.5 cm long, tomentose; rhachis $2-6 \mathrm{~cm}$ long, the bracts minute, ovate, $1-2 \mathrm{~mm}$ long,
subpersistent. Flowers sessile, subcongested; calyx cupulate, 4-6 mm long, shortly lanose, the teeth obtuse, about 1 mm long, more pubescent; corolla tubular, 11-15 mm long, appressed-lanose, the lobes acute, $2-3 \mathrm{~mm}$ long; staminal tube slightly exserted. Legume subterete, straight or twisted, at maturity about 35 cm long, 2.5 cm in diam, densely ferrugineous-tomentose, the margins wider than the valves.

Atlantic lowlands, from Guatemala to Panama.
Vernacular names: nacaspiro, cuje (Guatemala-Standley).
Guatemala: izabal: Entre Riós, Standley 72586 (F, NY); Milla 49.5 to Cristina, Steyermark 38392 (F); Puerto Barrios, Standley 73048 (F), 73078 (F).

Honduras: atlantida: Tela, Standley 54269 (F, US).
Nicaragua: zelaya: Bluefields, Río Escondido, Molina 1785 (F, GH).
Panama: canal zone: Barro Colorado Island, Bangham 528 (F). cocle: Bismarck, above Penonomé, R. S. Williams 405 (NY, US).

Inga coclensis was described by Pittier from a detached branchlet with young fruits and associated by him, on the structure of the leaf rhachis, with I. rubiginosa DC. of South America and I. eriorhachis Harms of Costa Rica. At present it is impossible to see any close relationship uniting the three species and I. coclensis seems to have no strong affinities among the ser. inga. The present description is thus based on Nicaraguan and Guatemalan material for the inflorescences and the legume characters observed in the Panamanian specimens. The former do not agree completely with the type but more closely with the Bangham collection. The apparent discontinuity in Costa Rica is noteworthy. This, and some slight morphological differences, suggests the possibility of two different species, one in northern Central America and the other in Panama. The material available does not justify this separation.

Section III. leptinga Benth. in Hook., Lond. Jour. Bot. 4: 579, 1845.
§ Diadema Benth. in Hook., loc. cit. 583.
Trees; leaves large or small, glabrous or pubescent. Inflorescences shortly to long-pedunculate, the peduncle stout or slender. Flowers sessile or pedicellate, congested, the rhachis spheric or clavate, giving a capituliform or umbelliform appearance to the inflorescence. Legume flat.

Section leptinga is formed by group of species that have in common the type of floral arrangement but in other characters do not seem to be clearly related. It is probably that the congestion of the floral racemes was attained in different groups in the genus, and that the present section is of polyphyletic origin.

SPECIES . . . 48-56
a. Calyx tubular, the teeth shorter than the tube; leaves and inflorescences not ferru-gineous-setose; inflorescences on the young branchlets.
b. Rhachis of the leaves winged or widely marginate.
c. Calyx less than 5 mm long.
d. Flowers with long and slender pedicels. Panama48. I. umbellifera
dd. Flowers almost sessile, or the pedicels less than 1 mm long.
Panama ..49. I. alleniI
cc. Calyx 20-25 mm long. Costa Rica and Panama50. I. portobellensis
bb. Rhachis of the leaves terete.
e. Branchlets, inflorescences, and fruits tomentose. Mexico to Panama
51. I. Quaternata
ee. Branchlets, inflorescences, and fruits glabrous or slightly puberulous.
f. Flowers markedly pedicellate, the pedicels $4-14 \mathrm{~mm}$. long; leaves with 1-2 (rarely 3) pairs of leaflets; legume less than 15 cm long. Panama; Trinidad
52. I. heterophylla
ff. Flowers sessile or very shortly pedicellate, the pedicels less than 3 mm long; leaves generally with 3-5 pairs of leaflets; legume more than 15 cm long.
g. Stipules large, persistent, $15-20 \mathrm{~mm}$ long; pedicels up to 3
mm long. Mexico to Costa Rica53. I. paterno
gg. Stipules short, caducous, up to 8 mm long; flowers sessile.
h. Calyx $4-5 \mathrm{~mm}$ long; corolla pilose, often deeply cleft to one side. Costa Rica
54. I. mortoniana
hh. Calyx $1-3 \mathrm{~mm}$ long; corolla glabrous, regular.
Mexico ..55. I. Jinicuil
aa. Calyx turbinate, the teeth longer than the tube; leaves and fruits ferrugin-
eous-setose; flowers often in the old wood. Panama
56. I. saffordiana
48. Inga umbellifera (Vahl) Steud., Bot. Nom. Phan. 431, 1821.

Mimosa umbellifera Vahl, Eclog. 3: 30, 1807. (Type von Rohr s.n. photo)
Inga sciadion Steud., Flora 26:758, 1843. (Type Hostmann \& Kappler 170)
I. umbratica Poeppig, Nov. Gen. Sp. Pl. 3: 77, 1845. (Type Poeppig s.n. photo)
I. myriantha Poeppig, loc. cit. (Type Poeppig s.n.)

Feuilleea myriantha (Poeppig) O. Ktze., Rev. Gen. 1: 188, 1891.
F. sciadion (Steud.) O. Ktze., loc. cit. 189.
F. umbellifera (Vahl) O. Ktze., loc. cit.
F. umbratica (Poeppig) O. Ktze., loc. cit.

Inga gracilipes Standley, Jour. Wash. Acad. Sci. 15: 101, 1925. (Type Standley 30353)
I. lawrenceana Britton \& Killip, Phytologia 1:23, 1933. (Type Lawrence 260)

Small trees; branchlets terete, shortly lanose when young, in age glabrate and densely lenticellate. Leaves with 2-3 pairs of leaflets; leaflets subcoriaceous, elliptic, often markedly oblique, the apex acute to acuminate, the acumen broad to triangular, the base broadly cuneate to rounded, above lustrous, glabrous, the 4-8 pairs of lateral nerves distant and prominent, the upper pair elliptic, $9-16 \mathrm{~cm}$ long, $4-6 \mathrm{~cm}$ wide, the lower pair elliptic-lanceolate, $4-6 \mathrm{~cm}$ long, $1-3 \mathrm{~cm}$ wide, the petiolules dark, $1-2 \mathrm{~mm}$ long, pilose or glabrous; rhachis winged, $2-11 \mathrm{~cm}$ long, sometimes with a linear apical appendage, the wings narrowly cuneate, broader above, becoming progressively obsolete to the base, the glands large, patelliform or subcupulate, about 2 mm in diam; petiole winged above, $1-3 \mathrm{~cm}$ long, glabrous or puberulent, the pulvinus black, conic; stipules linear-obovate, acute, about 5 mm long, sparsely pilose, subpersistent. Inflorescences axillary and solitary, or paniculate in terminal branchlets; peduncle slender, $1-5 \mathrm{~cm}$ long, glabrous or pilose, to woody and lenticellate; rhachis spheric, $3-4 \mathrm{~mm}$ long, the bracts spathulate, up to 2 mm long, pilose. Flowers greenish white, few to many, the pedicels slender, $7-15 \mathrm{~mm}$ long, sparsely pilose above; calyx cupulate-tubular, $3-5 \mathrm{~mm}$ long, sparsely pilose, the teeth very short and obtuse; corolla tubular-funnelform, 9-17 mm long, glabrous in the lower part, pilose at the lobes, lobes about 3 mm long; staminal tube exserted, the filaments about 1.5 cm long. Legume flat, oblong, 6-12 cm long, $1.5-2.5 \mathrm{~cm}$ wide, tomentose when young, in age glabrate.

Wet forests of the lowlands of Panama. (Brazil and Peru to the Guianas.)

Panama: canal zone: Barro Colorado Island, Avilés 16 (F), Bangham 488 (F), WoodWorth \& Vestal (F); France Field, Standley 30353 (US).

The interpretation of variability of I. umbellifera is based on the study of photos of several types plus type specimens and numerous other collections from South America. The characters used in establishing some of the species here mentioned as synonyms are very unstable; they are mainly the kind of pubescence, relative length of pedicels, size of flowers, etc. Another reason for the creation of several species has been the lack of correlation between species described from the Guianas and those from Peru and Colombia. In this vast area I. umbellifera shows as much variability as the majority of the other South American species of Inga. The relation between this species and the I. coriacea Desv. complex is not clear at present.

49. Inga allenii J. León, sp. nov.

Arbor ca 15 m alta; ramulis teretibus, cortice albo. Foliola 3-juga elliptica apice longe acuminata acumen acuto ca 15 mm longo, basi acuta vel obtusa obliqua, supra opaca glabra minute punctata nervis lateralibus prominentibus, superiora cuneate elliptica $8-10 \mathrm{~cm}$ longa $3.0-3.5 \mathrm{~cm}$ lata, inferiora ovale elliptica 5.5-7.0 cm longa $2.5-3.0 \mathrm{~cm}$ lata, petiolulis brevibus ca 1 mm longis crassis glabris; rhachibus anguste alatis vel marginatis supra canaliculatis $5.0-6.5 \mathrm{~cm}$ longis, alis latioribus infra foliola, glandulis interfoliolaribus pyriformibus ca 3 mm longis glabris, foramine minuto albo; petiolis teretibus supra canaliculatis $2-3 \mathrm{~cm}$ longis glabris vel puberulis, pulvino crassiori ca 4 mm longo; stipulis oblongis ca 2 mm longis pubescentibus caducis. Inflorescentiae solitariae terminales vel axillares in ramulis brevibus, pedunculis gracilibus $3-4 \mathrm{~cm}$ longis puberulis; rhachibus globosis $3-4 \mathrm{~mm}$ diam; bracteis oblanceolatis 8 mm longis pilosis. Flores tenue pedicellati congesti; calyce tubuloso $2-3 \mathrm{~mm}$ long sparse piloso, dentibus inaequalibus cristatis; corolla tubulosa 6-7 mm long pilosa, lobis acutis $1.0-1.5 \mathrm{~mm}$ longis; tubo staminali incluso vel exserto filamentis ca 5 cm longis. Legumen ignota.

Panama: cocle: hills north of El Valle de Antón, trail to La Mesa, about 1000 m elev., Allen 2687 (holotype US).

Allied to I. mortoniana in the structure of the leaves and inflorescence; easily separated on account of the shape of the glands and the winged rhachis.
50. Inga portobellensis Beurl., Svensk. Vet. Akad. Handl. 1854: 122, 1856. (Type Billberg 72)

Inga macrophylla Billb. ex Beurl., loc. cit., pro syn., non Willd.
Trees, almost completely glabrous; branchlets terete, lenticellate. Leaves large, with 2 pairs of leaflets; leaflets coriaceous, obovate-oblong, the apex acute to longacuminate, the acumen up to 2 cm long, the base acute, unequal, slightly cordate or revolute, above dark green, lustrous, except for the puberulent midnerve, the
nerves impressed, beneath paler, glabrous or sparsely pilose on the nerves and margin, the nerves prominent, the upper pair obovate-oblong to spathulate, 9-25 cm long, $6-10 \mathrm{~cm}$ wide, the lower pair oblong, $6-10 \mathrm{~cm}$ long, $3-5 \mathrm{~cm}$ wide; rhachis cuneately winged $5-12 \mathrm{~cm}$ long, with a terminal, linear, deciduous appendage up to 16 mm long and 2 mm wide, the glands shortly stipitate, hemispheric, pertuse; petiole short, l-3 cm long, winged above, the pulvinus terete and thicker; stipules foliaceous, ovate to ovate-lanceolate, acuminate at the apex, cordate at the base, $6-18 \mathrm{~mm}$ long, $5-9 \mathrm{~mm}$ wide, solitary or in groups of 2-3, subpersistent. Inflorescences solitary, axillary; peduncle terete, $1-5 \mathrm{~cm}$ long, glabrous or puberulent, with an involucre of stipules, the bracts ovate-oblong, up to 12 mm long, caducous; rhachis spheric, about 3 mm in diam, with 8-20 flowers, the bracts spathulate 3-7 mm long, caducous. Flowers pedicellate, the pedicels thick, $4-5 \mathrm{~mm}$ long; calyx tubular-funnelform, $24-26 \mathrm{~mm}$ long, $10-12 \mathrm{~mm}$ wide, striate, glabrous except at the tips, the teeth 3 mm long, pilose; corolla tubular, 38-42 mm long, glabrous except at the tip of the lobes, the lobes $3-4 \mathrm{~mm}$ long, sparsely pilose; staminal tube very exserted, $40-45 \mathrm{~mm}$ long, the filaments about 2 cm long. Legume (immature) flat, oblong, curved, apiculate, about 19 cm long, 3 cm wide, the margins thick and slightly elevated.

Lowlands of Costa Rica and Panama.
Costa Rica: puntarenas: Playa Blanca, M. Valerio 468 (CR, F) ; Santo Domingo de Golfo Dulce, Tonduz 9879 (CR, GH, MO, NY, US).

Panama: canal zone: Río Pequení, between Salamanca and Río Boquerón, Allen 17282 (GH, MO). colon: Portobello, Billberg 72 (photo, MO).

An outstanding species due to its large, glabrous flowers, globose inflorescence, and large, permanent stipules. It belongs to a group represented only in Brazil by two species: I. cordistipula Mart., with smaller and more numerous flowers, and I. inflata Ducke, especially noteworthy by its huge calyx. The Costa Rican specimens do not match Beurling's description well, especially in the size of the flowers. Allen 17282 is a young specimen, the flowers in bud, with long and slender peduncles; it offers, however, the same type of inflorescence and leaves as the Tonduz collection.

51. Inga quaternata Poeppig, Nov. Gen. Sp. Pl. 3: 79, 1844. (ex char.)

Feuilleea quaternata (Poeppig) O. Ktze., Rev. Gen. Pl. 1: 188, 1891.
Inga maxoniana Pittier, Contr. U. S. Nat. Herb. 18: 174, 1916. (Type Pittier 6012)
I. roussoviana Pittier, loc. cit. 175. (Type Pittier 5270)
I. williamsii Pittier, loc. cit. 176. (Type R. S. Williams 285)
I. schippii Standley, Publ. Field Mus. Nat. Hist., Bot. Ser., 11: 132, 1932. (Type Schipp 538)
I. santanderensis Britton \& Killip, Ann. N. Y. Acad. Sci. 35: 114, 1936. (Type Killip \mathcal{O} Smith 15477)
I. mutisii Britton \& Killip, loc. cit. (Type Mutis 3644)

Trees up to 15 m tall; branchlets terete, ferrugineous-tomentose to glabrous, lenticellate. Leaves with 3-4 pairs of leaflets; leaflets oblanceolate to ovate, the apex acute, truncate or ending in a short mucro, the base acute to obtuse, above lustrous and glabrous, or pubescent along the main nerves, beneath shortly pilose,
the distant nerves prominent, the upper pair narrowly oblanceolate to obovate to elliptic, $7-21 \mathrm{~cm}$ long, $3-7 \mathrm{~cm}$ wide, the lower pairs elliptic to ovate, the basal about half the size of the terminal pair, the petiolules thick, terete, $1-3 \mathrm{~mm}$ long; rhachis terete, $3-8 \mathrm{~cm}$ long, tomentose to glabrescent, the glands stipitate, disciform or patelliform, often obsolete; petiole terete, $1-3 \mathrm{~cm}$ long, the pulvinus conic and thicker; stipules obcordate, $1.0-1.5 \mathrm{~mm}$ long, tomentose, caducous. Inflorescences solitary and axillary, or terminal on the new shoots; peduncle terete, $2.5-3.5 \mathrm{~cm}$ long, densely ferrugineous-tomentose; rhachis short, clavate, 1-3 mm long, giving to the inflorescence a capituliform appearance, the bracts conspicuous, the lower ones obovate, the upper spathulate, up to 2.5 mm long, pilose outside, subpersistent. Flowers sessile to long pedicellate, the pedicels slender, obsolete to 9 mm long, ferrugineous-pubescent; calyx tubular to tubular-subcampanulate, $2-7 \mathrm{~mm}$ long, pubescent, the teeth spreading, $1.0-2.5 \mathrm{~mm}$ long; corolla tubular-funnelform, 5-11 mm long, appressed-pubescent, the lobes $1-2 \mathrm{~mm}$ long; staminal tube included or exserted. Legume flat, oblong, apiculate at the apex, rounded at the base, 3-18 cm long, $2-3 \mathrm{~cm}$ wide, about 1.5 cm thick when mature, densely ferrugineouspubescent when young, in age glabrate or thinly pilose, the margins elevated.

Wet lowlands, from $0-600 \mathrm{~m}$ elev., from Mexico to Panama. (South America.)
Vernacular names: acotopillo de montaña (Veracruz-L1. Williams); guabito cansa boca (Panama-Standley).

Mexico: veracruz: Fortuño, Ll. Williams 8472 (F).
British Honduras: Banana Creek, Cockscomb Mts., Schipp 538 (F, MO); Camp 31, Schipp 1283 (F, GH, MO).

Guatemala: izabal: Quiriquá, Standley 23954 (US), 23956 (NY, US).
Honduras: atlantida: La Ceiba, Yuncker, Koepper \& Wagner 8337 (F, GH, MO, NY, US), 8564 (F, GH, MO, NY, US) ; Lancetilla, Standley 56834 (F, NY, US) ; Puerto Sierra, P. Wilson 41 (NY); Tela, Standley 56619 (F, US).

Costa Rica: cartago: Las Vueltas, Tucurrique, Tonduz 13125 (US). puntarenas: Sto. Domingo de Golfo Dulce, Tonduz 10032 (CR, GH, NY, US).

Panama: bocas del toro: Changuinola Valley, Cooper \& Slater 13 (F, US), Stork 272 (US). canal zone: Barro Colorado Island, Bangham 512 (F, US), Bailey 270 (F, GH), Brown 71 (F), 171 (F), Dodge \& Allen 17049 (GH), Kenoyer 364 (US), 365 (US), Killip 40022 (MO, US), Shattuck 1128 (F), Steyermark \& Allen 16781 (GH), Wetmore \& Abbe 40 (F, GH), 97 (F, GH), 101 (F, GH), Woodworth \& Vestal 383 (F), 569 (F), 616 (F), Zetek 3579 (F), 3586 (F), 3827 (F), 3929 (F, MO); France Field to Catival, Standley 30170 (US), 30335 (US). chiriqui: San Félix, Pittier 5270 (GH, US). cocle: Penonomé, R. S. Williams 285 (US).

The interpretation of this species is based on Poeppig's ample description, since the type was not available for my study. Inga quaternata is one of the most variable species in this genus and has been the basis of indefinite segregates based on the varying shape of leaflets, length of peduncles and pedicels, type of pubescence, etc. The three characters mentioned, however, have a wide variation in the same specimen: Pittier 5270, for instance, has pedicels that vary from 5 to 38 mm in length. In central Panama the trend is towards smaller and rounded leaflets, short peduncles and almost sessile flowers, but there occur all intermediates; in British Honduras and Guatemala the leaflets are larger and the peduncles longer. There are all types of intergradation in South America also, such as among I. wittiana Harms, I. pardoana Harms, I. boliviana, Rusby, I. conglomerata Benoist
and I. mathewisiana Benth., which are probably but local variants within a wide complex.

Another problem arises in the relationship of I. quaternata Poeppig and I. nobilis Willd. The basic character to set them apart, even in different sections, is the clavate type of receptacle in the first, a definite raceme in the second. The floral bracts are alike, however, and in fruit or sterile condition they are impossible to tell apart (cf. Publ. Field Mus. Nat. Hist., Bot. Ser., 13(3): 33, 1943). Only more collections will clarify this interesting relationship.
52. Inga heterophylla Willd. in L., Sp. Pl. 4: 1020, 1806. (Type Hoffmansegg s.n. photo)

Mimosa parae Poir. in Lam., Encycl. Suppl. 1: 44, 1810.(ex char.)
Inga umbellata G. Don, Hist. Dichl. Pl. 2: 391, 1832. (ex char.)
I. protracta Steud., Flora 1843: 758, 1843. (Type Hostmann \& Kappler 1194)

Feuilleea heterophylla (Willd.) O. Ktze., Rev. Gen. Pl. 1: 188, 1891.
F. stenocarpa (Spruce) O. Ktze., loc. cit. 189.

Inga mapiriensis Pittier, Contr. U. S. Nat. Herb. 18: 174, 1916. (Type Buchtien 1768)
Small trees; branchlets terete, striate, puberulent to completely glabrous, lenticellate. Leaves small, in the fertile branches with 1 or rarely 2 pairs of leaflets, in the sterile branches with 3-4 pairs; leaflets subcoriaceous, ovate to lanceolate-elliptic, the apex markedly attenuate and acuminate, shortly mucronate, the base cuneate, above dark green, lustrous, glabrous, the nerves slightly prominent, beneath paler, glabrous, the nerves prominent and finely reticulate, the upper pair elliptic to lanceolate, strongly oblique, $3-8 \mathrm{~cm}$ long, $2.5-3.0 \mathrm{~cm}$ wide (apparently somewhat larger in South America), the lower pair considerably shorter, 2-5 cm, $1.0-2.5 \mathrm{~cm}$ wide, the petiolules terete, up to 2 mm long, glabrous; rhachis terete, obsolete to 2 cm long, glabrous, the glands minute, hemispheric, pertuse at the apex, less than 1 mm in diam; petiole terete, $0.5-1.0 \mathrm{~cm}$ long, the pulvinus conic and darker; stipules linear, 2-3 mm long, caducous. Inflorescences umbelliform, axillary on the terminal branchlets, solitary or in groups; peduncle very slender, 0.7-1.5 cm long, glabrous; rhachis spheric or clavate, 2-4 mm long, pilose to glabrous, the bracts small, triangular, caducous. Flowers few to many in each umbel; pedicels slender, $4-12 \mathrm{~mm}$ long, glabrous; calyx cupulate, $0.7-1.5 \mathrm{~mm}$ long, glabrous except at the tips of the segments, the teeth minute, pilose; corolla white, tubular, slender, $4.5-6.0 \mathrm{~mm}$ long, glabrous, the lobes spreading, $1-2 \mathrm{~mm}$ long; staminal tube included to slightly exserted, the filaments about 1 cm long. Legume flat, oblong, straight or curved, apiculate, stipitate, $7-14 \mathrm{~cm}$ long, 1-2 wide, glabrous, the margins slightly prominent.

Lowland forests and bushlands of Trinidad and Panama. (Northern South America, Peru and Brazil, sometimes in xerophytic habitats.)

Panama: cocle: Bismarck, abcve Penonomé, R. S. Williams 600 (NY)
Trinidad: Aripo, road via Arima, Broadway 5839 (MO); woods at Omora, Eggers 1416 (US); without locality, Herb. Bot. Gard. Trin. 1032 (US).

This is a remarkable species allied to a South American complex including I. tarapotensis Benth., I. lateriflora Miquel, I. panuriensis Benth., etc. The Panamanian
plant, referred previously to I. laurina (Sw.) Willd. (=I. fagifolia) was first attributed to I. heterophylla by Schery (Ann. Missouri Bot. Gard. 37: 194, 1950). It is a mature specimen, in fruit, slightly different from the South American specimens in foliage characters, but the stipitate fruit and spheric receptacle ally it undoubtedly to I. heterophylla.
53. Inga paterno Harms in Fedde, Rep. Sp. Nov. 13: 419, 1914. (ex ic.; Type Preuss 1387) [cf. Preuss, Exp. Central- und Sudamer. pl. 8, fig. 6, pl. 9, 1901]
I. radians Pittier, Contr. U. S. Nat. Herb. 18: 178, 1916. (Type Cook 805)

Trees 8 to 15 m tall; branchlets terete or costate, glabrous, lenticellate. Leaves with 3-5 (generally 4) pairs of leaflets; leaflets coriaceous, obovate to lanceolate, the apex acute to long-acuminate, the base acute to rounded, sometimes decurrent, above lustrous, glabrous, the 5-8 pairs of lateral nerves prominent, beneath paler, glabrous, the nervation conspicuous, the upper pair elliptic to obovate, $7-18 \mathrm{~cm}$ long, 3-7 cm wide, the basal pair lanceolate-oblong to obovate, $6-10 \mathrm{~cm}$ long, 3-4 cm wide, the petiolules conic, canaliculate, $4-6 \mathrm{~mm}$ long, pilose, rhachis terete or slightly angulate, sometimes with margins in the upper sections, $8-16 \mathrm{~cm}$ long, glabrous to sparsely pilose, ending in a filiform appendix, up to 11 mm long, the glands cupuliform, sessile or stipitate, very often obsolete; petiole terete, $1.5-3.0 \mathrm{~cm}$ long, glabrous to sparsely pilose, the pulvinar section thicker and darker; stipules obovate to oblong, rounded or obtuse at the apex, $10-20 \mathrm{~mm}$ long, striate, glabrous, persistent. Inflorescences axillary, paniculate on short branches, or solitary; peduncle slender, $2-8 \mathrm{~cm}$ long, striate, sparsely pilose to glabrescent; rhachis spheric, 3-5 mm in diam, the bracts spathulate, 1 mm long, pilose. Flowers congested in umbelliform inflorescences, with pedicels from $0.5-3.0 \mathrm{~mm}$ long; calyx tubular, $1.5-$ 2.0 mm long, glabrous or very sparsely pilose, the teeth acute, 0.5 mm long, tufted; corolla tubular to slightly funnelform, $4.0-7.5 \mathrm{~mm}$ long, glabrous to sparsely pilose, the lobes acute to obtuse, $1-2 \mathrm{~mm}$ long, tufted; staminal tube included or exserted, the filaments $0.5-1.0 \mathrm{~cm}$ long. Legume flat, depressed between the seeds, up to 40 cm long, 7 cm wide and 3 cm thick, transversely striate, glabrous, the margins elevated; seeds oblong, 5 cm long, 2 cm wide, covered by thick, white, and succulent aril.

Mexico to Salvador; cultivated in Honduras and Costa Rica.
Vernacular names: cuil machetón (Oaxaca); paterno (Guatemala, Salvador, Costa Rica) ; guabo caite (Costa Rica).

Mexico: chiapas: Acacoyagua, Escuintla, Matuda 16496 (EAP, F); Monte Ovando, Matuda 2075 (F); Tapachula, Cook 805 (US); oaxaca: Concordia, Morton \& Makrinius 2414 (F, US), 2528 (F, US); Oaxaca, Conzatti \&̛ González 1146 (GH), Nelson 349 (US); San Andres Tuxtla, Nelson 487 (US); Talea, Galeotti 1 (F). veracruz: Chinameca, Orcutt 3279 (F).

Guatemala: alta verapaz: Cobán, Standley 91215 (F), 91218 (F); 91304 (F); El Tambor, Tejada 339 (US); Sepacuité, Cook \& Griggs 42 (US), 100 (US), 655 (US), 783 (US). escuintla: Escuintla, J. D. Smith 2820 (US). el progreso: Piamonte, Steyermark 43746 (F). el quiche: San Miguel Uspatán, Heyde \mathcal{H} Lux 3309 (GH, US). guatemala: Chinantla, J. D. Smith 2819 (GH, US). Peten: La Libertad, Aguilar 377 (F, MO). quezaltenango: Finca Pirineos, Steyermark 33398 (F). san marcos: El Porvenir, Steyer-
mark 37189 (F). santa rosa: Barberena, Hedye \& Lux 3280 (GH, US); Cuajiniquilapa, Heyde छ Lux 6122 (GH, NY, US). suchitepequez: Cocales, Standley 62069 (F).

Salvador: la libertad: Sta. Tecla, Lévy 787 (EAP). san salvador: San Salvador, Calderón 1641 (US), 283 (GH, NY, US), 284 (F, GH, MO, NY, US), 1642 (US), Standley 21756 (F, GH, MO, NY, US), 23563 (GH, NY, US). sonsonate: Sonsonate, Standley 22326 (GH, US).

Honduras: comayagua: Siguatepeque, Standley \& Chacón 6664 (F). el paraiso: Güinope, Williams \& Molina 9032 (GH, F).

Nicaragua: managua: Sierra de Managua, Uribe 434 (US)
Costa Rica: alajuela: Alajuela, J. D. Smith 6490 (US). cartago: Cartago, Torres 96 (F), 97 (F); Turrialba, Holdridge 2556 (IAIAS), León 2792 (IAIAS). SAN Jose: Escazú, Solis 186 (CR, F, MO), 289 (CR, F, MO); San José, Cook \& Doyle 15 (US).

Pittier discusses this species at length (Contr. U. S. Nat. Herb. 18: 178, 1916) and divides it into two: I. paterno Harms which he restricts to the highlands of Guatemala and Costa Rica, and I. radians found in the Pacific lowlands of Guatemala, Chiapas and Oaxaca. The separation is based on legume characters, established probably on abnormal fruits which are frequently due to the malformation of seeds. In the other characters used by Pittier there are intermediates that also invalidate the separation.

There is a close relationship between I. paterno and I. jinicuil, if indeed they are not the same species. But with the available specimens it is inadvisable to join them since they differ constantly in size and persistency of the stipules, size and shape of the calyx, and number and shape of the leaflets. It is quite probable that this separation will disappear once more when collections are made in Chiapas, Veracruz, and Oaxaca.

Inga paterno is the only Central American species that has a fruit of good quality; for this reason the center of origin is difficult to ascertain and the cultivated area extends now from Mexico to Costa Rica. It was the first Inga planted for shading coffee; but a high susceptibility to a kind of witches-broom disease, and the damage made to the coffee trees by people who collect legumes, is causing the abandoning of its cultivation.

54. Inga mortoniana J. León, sp. nov.-Fig. 6.

Arbor $12-15 \mathrm{~m}$ alta; ramulis teretibus sulcatis vel bullatis glabris vel puberulis cortice albo lenticellato. Foliola 3-juga subcoriacea elliptica vel lanceolato-elliptica, apice acuta, basi obtusa vel subacuta in petiolam decurrentia, supra nitida glabra nervis prominentibus, subtus palliodoria glabra nervis prominentibus sparse pilosioribus nervationi reticulato conspicuo, superiora elliptica $9-17 \mathrm{~cm}$ longa $4-6$ cm lata, inferiora lanceolata elliptica plerumque obliqua $4.5-9.0 \mathrm{~cm}$ longa 2.54.0 cm lata, petiolulis crassis angulatis fuscis $4-6 \mathrm{~mm}$ longis glabris; rhachibus teretibus vel angulatis $3.5-10.0 \mathrm{~cm}$ longis glabris, glandulis interfoliolaribus cupuliformibus ca 1 mm altis, foramine angusto; petiolis teretibus $2-3 \mathrm{~cm}$ longis glabris pulvino crasso $1.0-2.5 \mathrm{~cm}$ longo. Inflorescentiae capituliformes solitariae vel geminatae plerumque axillares in ramulis lateralibus brevibus rarius terminales; pedunculis teretibus $4.0-7.5 \mathrm{~cm}$ longis sparse pilosis, rhachibus globosis ca 2 mm diam bracteis linearibus 2.5 mm longis pilosis deciduis. Flores tenue pedicellalti

Fig. 6. Inga mortoniana J. León
in capitulo aggregati; calyce cupulato tubuloso $5-7 \mathrm{~mm}$ longis tubo sparse piloso basim apicem dense piloso, dentibus obtusis plerumque inaequalibus $0.5-1.5 \mathrm{~mm}$ longis; corolla tubulosa supra dilatata $9-11 \mathrm{~mm}$ longa appresse pilosa, lobis acutis $1.5-2.5 \mathrm{~mm}$ longis; tubo staminali exserto filamentis ca 1 cm longis; ovarium oblongum ca. 1.5 mm longum glabrum. Legumen oblonga lata 12 cm longa 4 cm lata transverse striata glabra.

Cloud forests of central Costa Rica from 1100 to 1500 m elevation.
Vernacular name: guaba-maría (Costa Rica-A. Smith).
Costa Rica: alajuela: Buena Vista, San Carlos, Barquero 3 (IAIAS); La Palma, San Ramón, Brenes 5516 (F); Tapezco, Zarcero, A. Smith 1230 (F, holotype NY); San Luíz, Zarcero, A. Smith 170 (NY, MO); Vara Blanca, Skutch 3315 (MO, NY), 3763 (MO, NY), 3780 (MO); Zapote, Zarcero, A. Smith 2894 (EAP); Zarcero, A. Smith 459 (F, MO, US).

This remarkable species, named in honor of Mr. C. V. Morton, U. S. National Herbarium, belongs to the group of I. paterno and I. jinicuil of northern Central America, but differs from both in the length and structure of the flowers and the number and shape of the leaflets. The spheric rhachis of the inflorescence is definitely of the leptinga type.

55. Inga jinicuil Schlecht., Linnaea 12: 559, 1838. (Type Schiede 675)

Trees; branchlets terete or angulate, glabrous, conspicuously lenticellate. Leaves with 3 pairs of leaflets; leaflets coriaceous, elliptic to lanceolate, acute to rounded, often asymmetric at the apex, the base acute to obtuse, oblique, decurrent, above lustrous, glabrous except along the pilose costa, the 5-7 pairs of lateral nerves distant and slightly prominent, the tertiary nervation conspicuous, beneath dull, glabrous, the nerves not markedly prominent, the upper pair elliptic, $8-15 \mathrm{~cm}$ long, $3-6 \mathrm{~cm}$ wide, the lower pair lanceolate-elliptic, $3-7 \mathrm{~cm}$ long, $1-5-3.0 \mathrm{~cm}$ wide, the petiolules dark conic, $2-4 \mathrm{~cm}$ long sparsely pilose; rhachis terete, $4-7 \mathrm{~cm}$ long, glabrous, lenticellate in the lower part, the glands orbicular, pedicellate or sessile, often obsolete; petiole terete, $1.5-2.0 \mathrm{~cm}$ long, glabrous, striate, lenticellate, the pulvinus conic and darker, $3-4 \mathrm{~mm}$ long; stipules oblong, 8 mm long, 3 mm wide, glabrescent, caducous. Inflorescences in groups of 3-7, rarely solitary, axillary generally below the new growth; peduncle slender, terete, 2-8 cm long, striate, glabrous to sparsely pubescent; rhachis globose, $3-4 \mathrm{~mm}$ in diam; flowers sessile or very shortly pedicellate, the pedicels up to 0.5 mm long; calyx campanulate, $1.0-2.5 \mathrm{~mm}$ long, glabrous or sparsely pubescent, the teeth short, acute, with tufts or hairs at the tips; corolla funnelform, 3-7 mm long, glabrous, the lobes $1.0-1.5 \mathrm{~mm}$ long, sparsely pubescent at the tips; staminal tube generally included, the filaments $6-8 \mathrm{~mm}$ long. Legume (fide Schiede) oblong, straight or curved, 15 cm long, 2.5 cm wide, glabrous.

Highlands of Veracruz and Michoacán, from 600 to 1200 m elevation.
Vernacular name: jinicuil.
Mexico: michoacan: Coahuayula, Emrik 38 (F). veracruz: Colipa, Liebmann 4440 (F); Córdoba, Bougeau $2043 b$ (GH, K); Jalapa, Pringle 8134 (F, GH, MO, NY, US), Schiede 675 (F, GH, MO), C. L. Smith 1438 (EAP, NY); Orizaba, Bilimek 137 (GH), Mohr 1765 (US); Teocelo, Goldman 690 (US); Zacualpán, C. A. Purpus 6325 (F, GH, NY).

Inga jinicuil is found in cultivation in the eastern side of Mexico, especially around the Indian dwellings in Veracruz. The area of origin is unknown. The large fruits have seeds with thick and sweet arils, and are often sold in the markets. The relationship between this species and its western relative, I. paterno, is discussed under the last species.
56. Inga saffordiana Pittier, Contr. U. S. Nat. Herb. 18: 176, 1916. (Type Pittier 5676)

Low trees, with long, pendant branches; branchlets terete, striate, densely setose, lenticellate. Leaves with 4-5 pairs of leaflets; leaflets subchartaceous, ovate to obovate-elliptic, the apex acute to acuminate, the acumen linear, ciliate, about 4 mm long, the base oblique, cuneate, above sublustrous and glabrous except at the ciliate margins, the nerves slightly prominent, beneath sparsely setose but more densely on the costa and main nerves, lateral nerves $6-9$, ascending, prominent, the intercalary nervation conspicuous, the upper pair spathulate to obovate-elliptic, $7-8 \mathrm{~cm}$ long, $2-3 \mathrm{~cm}$ wide, the lower pair lanceolate, $4.5-5.0 \mathrm{~cm}$ long, $2.5-3.0 \mathrm{~cm}$ wide, the petiolules about 2 mm long, sparsely setose; rhachis terete, $16-17 \mathrm{~cm}$ long, striate, setose, the glands long stipitate, $2.5-3.0 \mathrm{~mm}$ long, glabrous, pertuse and thicker at the apex, the terminal appendix linear, about 5 mm long, ciliate; petiole terete, $2.5-3.0 \mathrm{~cm}$ long, striate, densely setose, the pulvinus fleshy, $4-5 \mathrm{~mm}$ long, lustrous; stipules subulate, $5-14 \mathrm{~mm}$ long, setose, persistent. Inflorescences globose, long-pedunculate, cauliflorous (?) or on short spurs; peduncle slender, $4-12 \mathrm{~cm}$ long, setose; rhachis spheric, $2-3 \mathrm{~mm}$ in diam, the bracts subulate, bristly, about 5 mm long, the lowermost persistent. Flowers long-pedicellate; calyx (persistent in the immature fruits) conic, about 12 mm long, sparsely setose, the teeth subulate, about 11 mm long; corolla tubular, dilating above, 16 mm long, very sparsely pilose, the lobes 2.5 mm long, more pubescent. Legume (immature) flat, oblong, apiculate at the apex, cuneate at the base, $26-33 \mathrm{~cm}$ long, $2.5-3.0 \mathrm{~cm}$ wide, densely ferrugineous-setose.

Lowlands of western Panama. (Colombia?)
Panama: darien: Cerro de Garagará Sambú basin, Pittier 5676 (US).
This poorly known species is unique in the genus in having cauline inflorescences; this important character plus the shape of the leaves and structure of the flower, put it in a group by itself apart from any known species. Although its position within leptinga is justified by the type of inflorescence, it has some characters of the indument and structure of the calyx that recall some species of § inga (viz. ser. pllosiusculae). A Colombian collection (A. Fernández 267) from the Chocó, in the same general region where I. saffordiana was found, is the most comparable specimen seen. However it has only 2-3 pairs of leaflets and the slender, long-pedunculate inflorescences are born on the branchlets; the flower and type of indument are very similar to I. saffordiana.

Several South American species of Inga are found in cultivation at the botanic gardens and experiment stations in the West Indies, mainly in relation to their value as fruit trees or in connection to the use as shade trees for coffee and cacao.
Inga spectablis Willd.
Cuba: santa clara: Soledad Garden, J. G. Jack 8501 (US). Inga fastuosa Willd.

Cuba: santa clara: Soledad Garden, J. G. Jack 8472 (US). Puerto Rico: mayaguez: Mayagüez, Toro 13 (NY).
Inga quaternata Poeppig.
Puerto Rico: mayaguez: Mayagüez, 'Toro 11 (NY).

Excluded Species

Martens \& Galeotti, (Bull. Acad. Brux. 10, 2: 318-321, 1843) described the following species from Mexico: Inga? sericea Mart. \& Gal. (loc. cit. 318); I.? nitens Mart. \& Gal. (loc. cit.); I. laevigata Mart. \& Gal. (loc. cit.); I. speciosa Mart. \& Gal. (loc. cit. 320); and I. elegans Mart. \& Gal., (loc. cit. 321). From the descriptions it is clear that none belong to Inga and probably most of them are referable to Calliandra.

Inga anomala Kunth, Mim. 70, 1819 = Calliandra grandiflora (L'Her.) Benth. in Hook., Lond. Jour. Bot. 2: 139, 1840.
I. billbergiana Benth., in Hook., Lond. Jour. Bot. 4: 585, $1845=$ Pithecellobium rufescens (Benth.) Pittier, Contr. U. S. Nat. Herb. 18: 181, 1916.
I. canescens Cham. \& Schl., Linnaea 5: 592, $1830=$ Calliandra canescens (Cham. \& Schl.) Benth. in Hook., Lond. Jour. Bot. 3: 96, 1844.
I. cognata Schl., Linnaea 12:560, $1838=$ Pithecellobium cognatum (Schl.) Benth. in Hook., Lond. Jour. Bot. 5: 107, 1846.
Inga coriacea G. Don, Gen. Hist. Dichl. Fl. 2: 390, 1832. (Type Mociño \& Sessé s.n. in herb. Lamb., Mexico). The type was not available and the description is insufficient to refer it to any of the other species of Inga occurring in Mexico.
I. cyclocarpa (Jacq.) Willd. in L., Sp. Pl. 4: 1026, $1806=$ Enterolobium cyclocarpum (Jacq.) Griseb., Fl. Brit. W. Ind. 226, 1861.
I. emarginata Willd. in L., Sp. Pl. 4: 1009, $1806=$ Calliandra emarginata (Willd.) Benth. in Hook., Lond. Jour. Bot. 3: 95, 1844.
I. englesingii Standl., Trop. Woods 17:27, $1929=$ Pithcellobium englesingii (Standl.) Standl., Trop. Woods 34: 40, 1933.
I. foetida (Jacq.) Willd. in L., Sp. Pl. 4: 1008, $1806=$ Piptadenia foetida (Jacq.) Benth., Trans. Linn. Soc. 30: 366, 1875.
I. fragrans Macfay, Fl. Jamaica 1: 309, $1837=$ Acacia berteriana (Benth.) Fawc. \& Rendle, Fl. Jamaica 4: 145, 1920.
Inga gigantifoliola Schery, Ann. Missouri Bot. Gard. 37: 218, fig. 83, $1950=$ Pithecellobium Gigantifoliolum (Schery) J. León, comb. nov. This plant undoubtedly belongs to Pithecellobium because of its twice-pinnate leaves. This is easily seen in the type specimen (von Wedel 2349, MO) and more clearly in a collection from Livingston on the Reventazón, Prov. of Limón, Costa Rica (Rowlee \& Stork 793). Here also belongs Tonduz 9176 from Shirores, Talamanca, Costa Rica, in the same general region as the type collection.
I. globulifera Benth. in Hook., Lond. Jour. Bot. 4: 585, $1845=$ Pithecellobium rufescens (Benth.) Pittier, Contr. U. S. Nat. Herb. 18: 181, 1916.
I. guadalupensis Desv., Jour. Bot. 1: 70, $1814=$ Pithecellobium unguis-cati (L.) Benth. in Hook., Lond. Jour. Bot. 3: 200, 1844.
I. guatemalensis Hook. \& Arn., Bot. Beechey Voy. 419, $1841=$ Mimosa guatemalensis (Hook. \& Arn.) Benth., Bot. Voy. Sulph. 89, 1844.
I. houstoni DC., Prodr. 2: 442, $1825=$ Calliandra houstoniana (Mill.) Standl., Contr. U. S. Nat. Herb. 23: 386, 1922.
I. latifolia Willd. in L., Sp. Pl. 4: 1020, $1806=$ Pithecellobium latifolia Willd. in L., Sp. Pl. 4: 1020, $1806=$ Pithecellobium latifolium (L.) Benth. in Hook., Lond. Jour. Bot. 3: 214, 1844.
I. leucantha Presl, Bot. Bemerk. 65, $1844=$ Pithecellobium dulce (Roxb.) Benth. in Hook., Lond. Jour. Bot. 3: 199, 1844.
I. macrocarpa M. E. Jones, Contr. Western Bot. 15: 140, 1929 = Hymenaea courbaril L., Sp. Pl. 1192, 1753.
I. membranacea Benth., Trans. Linn. Soc. 30: 606, $1875=$ Pithecellobium membranaceum (Benth.) Schery, Ann. Missouri Bot. Gard. 37: 228, 1950.
I. patens Hook. \& Arn., Bot. Beechey Voy. 419, $1841=$ Entada patens (Hook. \& Arn.) Standl., Contr. U. S. Herb. 23: 349, 1922.
I. peckii Robinson, Proc. Amer. Acad. Sci. 49: 502, 1913 = Pithecellobium belizense Standl., Publ. Field Mus. Nat. Hist., Bot. Ser., 4: 212, 1929.
I. pennatula Cham. \& Schl., Linnaea 5: 593, $1830=$ Acacia pennatula (Cham. \& Schl.) Benth. in Hook., Lond. Jour. Bot. 1: 390, 1842.
I. pungens Willd. in L., Sp. Pl. 4: 1044, $1806=$ Pithecellobium dulce (Roxb.) Benth. in Hook., Lond. Jour. Bot. 3: 199, 1844.
I. purpurea (L.) Willd. in L., Sp. Pl. 4: 1021, $1806=$ Calliandra purpurea (L.) Benth. in Hook., Lond. Jour. Bot. 3: 104, 1844.
I. rufescens (Benth.) in Hook., Lond. Jour. Bot. 4: 585, $1845=$ Pithecellobium rufescens (Benth.) Pittier, Contr. U. S. Nat. Herb. 18: 181, 1916.
I. saman (Jacq.) Willd. in L., Sp. Pl. 4: 1024, $1806=$ Pithecellobium saman (Jacq.) Benth. in Hook., Lond. Jour. Bot. 3: 95, 1844.
I. semicordata Bertol., Fl. Guatem. 441, $1840=$ Calliandra emarginata (H. \& B.) Benth. in Hook., Lond. Jour. Bot. 3: 95, 1844.
I. speciosa Mart. \& Gal., Bull. Acad. Brux. 10, 2: 320, 1843 = Calliandra cumingii Benth. in Hook., Lond. Jour. Bot. 2: 140, 1840.
I. stevensoni Standl., Trop. Woods 23: 7, $1930=$ Pithecellobium stevensoni (Standl.) Standl. \& Steyerm., Publ. Field Mus. Nat. Hist., Bot. Ser., 23: 164, 1944.
I. tergemina Willd. in L., Sp. Pl. 4: 1008, $1806=$ Calliandra tergemina (Willd.) Benth. in Hook., Lond. Jour. Bot. 3: 96, 1844.
I. tetraphylla G. Don, Hist. Dichl. Pl. 2: 392, $1832=$ Calliandra tetraphylla (G. Don) Benth., Trans. Linn. Soc. 30: 554, 1875.
I. tubulifera Benth. in Hook., Lond. Jour. Bot. 4: 584, $1845=$ Pithecellobium tubuliferum (Benth.) Pittier, Contr. U. S. Nat. Herb. 18: 181, 1916.

Enumeration of the Species of Inga

Section I. Bourgonia Benth.

1. marginata Willd.
2. longispica Standl.
3. fagifolia (L.) Willd. ex Benth.
4. coruscans Willd.
5. belicensis Standl.
6. pezizifera Benth.

Section II. INGA
Series 1. Punctatae J. León
7. punctata Willd.
8. yunckeri Standl.
9. latipes Pittier
10. martinicensis Presl
11. brevipedicellata Harms
12. dominicensis Benth
13. pinetorum Pittier

Series 2. Multijugae J. León
14. multijuga Benth.
15. thibaudiana DC.
16. skutchii Standl.
17. ruiziana G. Don

Series 3. Densiflorae J. León
18. densiflora Benth.
19. schiedeana Steud.
20. micheliana Harms
21. squamigera J. León
22. davidsoniae Standl.
23. stenophylla Standl.
24. tenuipedunculata J. León
25. barbourii Standl.
26. hintoni Sandwith
27. calderoni Standl.

Series 4. Leptanthae Benth., emend. 28. cookii Pittier

Series 5. Acuminatae J. León 29. acuminata Benth.

Series 6. Pilosulae J. León
30. pilosula (Rich.) Macbride
31. hayesii Benth.
32. venusta Standl.

Series 7. Calocephalae Benth.
33. mucuna Walp. \& Duchass.
34. venosa Griseb. ex Benth.

Series 8. Goldmanianae J. León 35. goldmanii Pittier

Series 9. Dysanthae Benth. 36. standleyana Pittier

Series 10. Spectabiles J. León 37. spectabilis (Vahl) Willd.

Series 11. Vulpinae Benth.
38. tonduzii J. D. Smith

Series 12. Tetragonae Pittier
39. sapindoides Willd.

Series 13. inga
40. pauciflora Walp. \& Duchass.
41. brenesii Standl.
42. oerstediana Benth. ex Seem.
43. edulis Mart.
44. latibracteata Harms
45. vera Willd.

45a. subsp. vera.
45b. subsp. eriocarpa (Benth.) J. León 45 c. subsp. spuria (Willd.) J. León
46. ingoides (Rich.) Willd.
47. coclensis Pittier

Section III. Leptinga Benth.
48. umbellifera (Vahl) Steud.
49. allenii J. León
50. portobellensis Beurl.
51. quaternata Poeppig
52. heterophylla Willd.
53. paterno Harms
54. mortoniana J. León
55. jinicuil Schlecht.
56. saffordiana Pittier

INDEX OF LATIN NAMES

New taxa are in boldface type, all other taxa are in roman type; numbers in boldface type refer to descriptions, numbers in roman type refer to synonyms, numbers with dagger (\dagger) refer to names incidentally mentioned.

Acacia $266 \dagger$, $270 \dagger$; berteriana $355 \dagger$; pennatula $356 \dagger$
Acaciae $266 \dagger$
Affonsea 266 \dagger
Amosa 279
Calliandra $266 \dagger$, $355 \dagger$; canescens $355 \dagger$; cumingii $356 \dagger$; emarginata $355 \dagger$, $356 \dagger$; grandiflora $355 \dagger$; houstoniana $355 \dagger$; purpurea $356 \dagger$; tergemina $356 \dagger$; tetraphylla $356 \dagger$
Cojoba $266 \dagger$
Entada patens $356 \dagger$
Enterolobium 266 \dagger; cyclocarpum $355 \dagger$
Feuilleea 279; acuminata 313; coruscans 287; fagifolia 283; heterophylla 349; inga 336; ingoides 342; laurina 283; leptoloba 290; lindeniana 325; marginata 282 ; myriantha 345 ; oerstediana 330 ; panamensis 325 ; pezizifera 288; pilosula 315 ; punctata 290 ;
quassiaefolia 315; quaternata 347; ruiziana 301; sapindoides 325 ; sciadon 345; setifera 315; spectabilis 322 ; spuria 339 ; stenocarpa 349; umbellifera 345; umbratica 345 ; xalapensis 339
Gliricidia sepium 273 \dagger
Hymenaea coubaril $356 \dagger$
Inga $265-359 \dagger$, 279; sect. Bourgonia $267 \dagger$, $269 \dagger$, 275 \dagger, 276 \dagger, $280 \dagger$, 281, $290 \dagger$; sect. Diadema $269 \dagger$, $275 \dagger$, 344 ; sect. Euinga $275 \dagger$, $276 \dagger$, $289,311 \dagger$, $322 \dagger$, $330 \dagger$; sect. Inga $265 \dagger$, $267 \dagger$, $276 \dagger$, $280 \dagger$, 289, $290 \dagger$, $354 \dagger$; sect. Leptinga $269 \dagger$, $275 \dagger$, $276 \dagger$, $277 \dagger$, $281 \dagger$, 344, $353 \dagger$, $354 \dagger$; sect. Pseudinga $270 \dagger$, $275 \dagger$, $276 \dagger$, 289 ; subsect. Grandiflorae $270 \dagger$; subsect. Tenuiflorae $270 \dagger$; ser. Acuminata $280 \dagger$, 313; ser. Calocephalae $267 \dagger$, $276 \dagger$, $280 \dagger$, 317, $318 \dagger$; ser. Densiflorae $280 \dagger$, 302, 311 \dagger; ser. Dy-
santhae $267 \dagger, 380 \dagger$, 320, $322 \dagger$; ser. Goldmanianae $280 \dagger$, 319; ser. Gymnopodae $276 \dagger$; ser. Inga $268 \dagger, 269 \dagger, 281 \dagger$, 328, $330 \dagger$, $344 \dagger$; ser. Leptanthae $280 \dagger$, 312; ser. Multijugae 280 \dagger, 297; ser. Pilosulae $276 \dagger$, 314, $354 \dagger$; ser. Punctatae $276 \dagger$, $280 \dagger$, 289; ser. Spectabiles $281 \dagger$, 322; ser. Sulcatae $322 \dagger$, 328, $330 \dagger$; ser. Tetragonae $269 \dagger, 276 \dagger, 281 \dagger, 311 \dagger, \mathbf{3 2 4}$; ser. Vulpinae $267 \dagger, 268 \dagger, 281 \dagger, 314 \dagger$, 323; acuminata $270 \dagger, 277 \dagger, 312 \dagger, \mathbf{3 1 3}, 314 \dagger$; adenophylla $368 \dagger$, $320 \dagger$; aestuarium 298 , 299 \dagger, $301 \dagger$; affinis $274 \dagger$, 315 ; alatopetiola 325 ; allenii $265 \dagger, 344 \dagger, \mathbf{3 4 6}$; altissima $267 \dagger$; angustifolia $314 \dagger$; anomala $355 \dagger$; antioquensis 325 ; barbata $274 \dagger$; barbourii $302 \dagger$, $303 \dagger, \mathbf{3 0 8}$; belicensis $276 \dagger, 281 \dagger, \mathbf{2 8 7}, 288 \dagger$; berteriana 339; billbergiana $355 \dagger$; biolleyana $325,328 \dagger$; boliviana $348 \dagger$; brenesii $328 \dagger$, 330; brevipedicellata $290 \dagger$, 295, $296 \dagger$; brunnescens $299 \dagger$; caldasiana 287; calderoni $303 \dagger$, $\mathbf{3 1 1}$; camuriensis 325; canescens $355 \dagger$, caracasana 325 ; chardonii 325; chartana 330; chiriquensis 330 ; ciliata $313 \dagger$; cinnamomea $274 \dagger$, $277 \dagger$; cobanensis $330,332 \dagger$; coclensis $328 \dagger$, $329 \dagger$, 343, $344 \dagger$; cognata $355 \dagger$; confusa 301 ; conglomerata $348 \dagger$; cookii $267 \dagger$, 312, $313 \dagger$; cordistipula $277 \dagger$; $347 \dagger$; coriacea $346 \dagger$, $355 \dagger$; coruscans $276 \dagger$, $281 \dagger$, 283†, 287 \dagger, $295 \dagger$; culagana 330 ; cyclocarpa $355 \dagger$; cylindrica $283 \dagger$; davidsoniae $302 \dagger$, $303 \dagger$, $304 \dagger$, 307; densiflora 268 $\dagger, 270 \dagger$, $274 \dagger$, $302 \dagger$, 303, $304 \dagger$, $305 \dagger$, $306 \dagger, 307 \dagger$; dominicensis 273†, 290†, 296, 297 \dagger; donnell-smithii 339, $343 \dagger$; dysantha $322 \dagger$; edulis $268 \dagger$, $274 \dagger$, $275 \dagger, 278 \dagger, 328 \dagger, 329 \dagger, 332 \dagger, 333$, $334 \dagger$, $343 \dagger$, var. grenadensis $330,332 \dagger$, var. minutiflora $330,332 \dagger$, var. typica $333 \dagger$; eggersii 325 ; elegans $355 \dagger$, emarginata $355 \dagger$; endlicherii $333 \dagger$; endlichii 334 ; englessingii $355 \dagger$; eriocarpa 338 , $342 \dagger$; eriocarpoides $342 \dagger$; eriorhachis 330 , $332 \dagger$, $344 \dagger$; excelsa 282 ; fagifolia $273 \dagger, 275 \dagger$, $276 \dagger, 277 \dagger, 281 \dagger, 283,284 \dagger, 286 \dagger$, 288 \dagger, 301, $350 \dagger$; fasciculata $333 \dagger$; fastuosa $276 \dagger$, $317 \dagger$, $318 \dagger$, $319 \dagger$; feuillei $268 \dagger$, 271 $\dagger, 274 \dagger$; fissicalyx 339, 342 \dagger; flexuosa 304; foetida $355 \dagger$; foliosa 301 ; fragrans $355 \dagger$; fulgens 322; galibica 342; gigantifoliola 355; gladiata 299; globulifera $355 \dagger$; goldmanii $268 \dagger$, 319, 321 \dagger; gracilipes 345; grandifolia 325; guadalupensis $355 \dagger$; guatemalensis $355 \dagger$; guayaquilensis 282; hartii 325; hayesii $268 \dagger, 277 \dagger, 314 \dagger, \mathbf{3 1 6}, 317 \dagger$; heinei $304 \dagger$; heterophylla $269 \dagger$, $345 \dagger$, $\mathbf{3 4 9}$, $350 \dagger$; hintoni $302 \dagger, 303 \dagger$, 310; hirsutissima $323 \dagger$; houstonia $355 \dagger$; ierensis 290 ; inflata $277 \dagger$; 347 \dagger; inga 336; ingoides $329 \dagger$, 342, 343; java 304†; jimeneziana

325; jinicuil $270 \dagger$, $274 \dagger$, $277 \dagger$, $296 \dagger$, $345 \dagger$, $351 \dagger$, 353; laevigata $355 \dagger$; lamprophylla 336; langlassei 303, 304†; lateriflora 349†; latibracteata $329 \dagger, 334$; latipes $290 \dagger$; 293 \dagger; 294; latifolia $356 \dagger$; laurina 283, $286 \dagger$, $350 \dagger$; lawrenceana 345; leptantha $313 \dagger$; leptoloba 292 \dagger; 293 \dagger; leucantha $356 \dagger$; limonensis $304 \dagger$; lindeniana $325 \dagger$; longispica $276 \dagger$, $281 \dagger$, 283; lopadenia $287 \dagger$; lucida 322; macradenia 299; macrocarpa $356 \dagger$; macrophylla $276 \dagger$, $317 \dagger$, $319 \dagger$, 346 ; mapiriensis 349; marginata $268 \dagger$, $272 \dagger$, 281, 283 \dagger; martinicensis $273 \dagger$, 294, 295, $296 \dagger$, 297 \dagger; mathewsiana $349 \dagger$; maxoniana 347 ; membranacea $356 \dagger$; merianae 342 ; micheliana $302 \dagger$, $303 \dagger$, $304 \dagger$, 305, $332 \dagger$; microdontha $304 \dagger$; microstachya 288 ; mociniana 339; mollifoliola 303; montealegrei 303, 304†; monticola 303; mortoniana $265 \dagger$, 268t, 277 \dagger, 345 \dagger, $346 \dagger, ~ 351, ~ 352 \dagger$; mucuna $276 \dagger$, 317, 318 \dagger, 319 \dagger; multijuga $270 \dagger$, 298, $299 \dagger$, $300 \dagger$, $301 \dagger$; mutisii 347; myriantha 345; nitida 315; nitens $355 \dagger$; nobilis $349 \dagger$; odorata 282 ; oerstediana $267 \dagger$, $274 \dagger$, $278 \dagger$, $328 \dagger$, $329 \dagger$, 330, $332 \dagger$, $333 \dagger$, $334 \dagger$; oophylla 338 , 339 \dagger; pamplonae 330; panamensis 325, var. clavata $325,328 \dagger$, var. pittieri 325 , var. rodrigueziana 325 ; panuriensis $349+$; pardoana $349 \dagger$; patens $356 \dagger$; paterno $274 \dagger$, $277 \dagger$, 345 $\dagger, 350,351 \dagger$, 353†; pauciflora $328 \dagger$, 329, $330 \dagger$; peckii $356 \dagger$; pennatula $356 \dagger$; pezizifera $276 \dagger$, $281 \dagger$, 288; pilosiuscula 315 ; pilosula $268 \dagger$, $270 \dagger, \mathbf{3 1 4}$, $315 \dagger$; pinetorum $280 \dagger, 290 \dagger$, 297; pittieri 325 ; platycarpa 315 ; papayanensis 290 ; portobellensis $277 \dagger$, $344 \dagger$, 346; preussi 325; pringlei 304; protracta 349; pruriens $268 \dagger$, $320 \dagger$; psitacorum 313 \dagger; puberula 282; punctata $268 \dagger, 272 \dagger, 274 \dagger, 277 \dagger, 289 \dagger$, 290, 292 $\dagger, 293 \dagger$, 294 $\dagger, 296 \dagger$, 297 \dagger, subsp. chagrensis 290, var. panamensis 290; pungens $356 \dagger$; purpurea $356 \dagger$; purpusii 325 ; pychnostachyla 282; quassiaefolia 314; quaternata $269 \dagger$, $272 \dagger$, $345 \dagger$, 347, $348 \dagger$, $349 \dagger$; radians 350 , $351 \dagger$; recordii 299 ; rensoni 325 ; rodrigueziana 325 ; roussoviana 347; rubiginosa $322 \dagger$, $344 \dagger$; rufescens $356 \dagger$; ruiziana $268 \dagger$, $275 \dagger$, $280 \dagger$, $288 \dagger$, 298 \dagger; 299 $\dagger, 301$; saffordiana $268 \dagger$, $270 \dagger, 277 \dagger$, 354; salvadorensis 325; saman $356 \dagger$; santanderensis 347 ; sapida 281 ; sapindoides $268 \dagger$, $274 \dagger$, $276 \dagger$, 325, $327 \dagger$, $328 \dagger$; schiediana $302 \dagger$, $303 \dagger$, 304, $305 \dagger$; schippii 347; sciadon 345; sciadodendron 334; semialata 282 ; semicordata $356 \dagger$; sericea $355 \dagger$; sessilis $319 \dagger$, $320 \dagger$; setifera 315; skutchii $280 \dagger$, 298t, 300; smithii 322, $323 \dagger$; sordida $303,304 \dagger$; speciosa $355 \dagger$, $356 \dagger$; speciosissima $274 \dagger$; spectabilis
$274 \dagger$, 322, $323 \dagger$; spuria $339,342 \dagger$; squamigera $265 \dagger$, $303 \dagger$, 306; standleyana 321, $322 \dagger$; stenophylla $302 \dagger$, $303 \dagger$, 307, $308 \dagger$; stevensoni $356 \dagger$; strigillosa $293 \dagger$; subsericantha $289 \dagger$; subvestita 312; tarapotensis $349 \dagger$; tenuiflora 299; tenuipedunculata $265 \dagger$, $303 \dagger$, 308; tergemina $356 \dagger$; tetraphylla 283, $356 \dagger$; thibaudiana $272 \dagger$, $277 \dagger$, 298 \dagger, 299, $300 \dagger$; tiribiana $304 \dagger$; tonduzii $323 \dagger$, 324, $325 \dagger$; tubulifera $356 \dagger$; tuerckheimii 330; umbellata 349; umbellifera $344 \dagger, \mathbf{3 4 5}, 346 \dagger$; umbratica 345 ; urabensis $314 \dagger$; uraguensis $274 \dagger$, $275 \dagger$, $342 \dagger$; venosa $273 \dagger$, $276 \dagger$, $317 \dagger$, 318, $319 \dagger$; venusta $277 \dagger, 314 \dagger, 316,317 \dagger$; vera $272 \dagger$, $277 \dagger, 278 \dagger, 279 \dagger, 328 \dagger$, $329 \dagger$, 333, 335, $342 \dagger$, $343 \dagger$, subsp. eriocarpa $336 \dagger$, 338, subsp. lamprophylla 336, subsp. portoricensis 336 , subsp. spuria $335 \dagger$, $336 \dagger$, 339, subsp. vera 336, $337 \dagger$, $339 \dagger$, var. lamprophylla 336, var. portoricensis 336; vulpina $323 \dagger$; williamsii 347 ; wittiana $348 \dagger$; xalapensis 339 ; ynga 333 ; yunckeri $290 \dagger$, 293; zapacuanica $334,335 \dagger$
Ingae $266 \dagger$

Ingaria 279
Leguminosae $265 \dagger$, $267 \dagger$, $272 \dagger$, $320 \dagger$
Lysiloma $266 \dagger$
Mimosa $266 \dagger$, $270 \dagger$; coriacea $295 \dagger$; coruscans 287; fagifolia 283, 286 \dagger, 294; guatemalensis $355 \dagger$; inga $335,337 \dagger$; ingoides 342 , laurina 283 ; lucida 315 ; nitida 315 ; parae 349 ; pilosula 314, quassiaefolia 315; semialata 281 ; sericea $290,294,295 \dagger$; spectabilis 322 ; spuria 339 ; tetraphylla 283; umbellifera 345; ynga 333
Mimosaceae 265†, 267 \dagger, 269 \dagger
Mimosae $266 \dagger$
Piptadenia foetida $355 \dagger$
Pithecellobium $266 \dagger$, $268 \dagger$, $272 \dagger$, $355 \dagger$; sect. Caulanthon $266 \dagger$; belizense 356 \dagger; cognatum $355 \dagger$; dulce $356 \dagger$; englesingii $355 \dagger$ gigantifoliolum 355; latifolium 356; tum $355 \dagger$; dulce $356 \dagger$; englesingii $355 \dagger$; saman $356 \dagger$; stevensoni $356 \dagger$; tubuliferum $356 \dagger$; unguis-cati $355 \dagger$
Swartzieae 269 \dagger
Torealia 279
Zygia 266†

[^0]: ${ }^{1}$ Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Washington University in affiliation with the Missouri Botanical Garden.
 ${ }^{2}$ Present address: Instituto Interamericano de Ciencias Agricolas de la OEA, Lima, Peru.
 Ann. Missouri Bot. Gard. 53 (3): 265-359, 1966.
 The previous issue of the Annals of the Missouri Botanical Garden, Vol. 53, No. 2, pp. 115-264, was published on November 7, 1966.

[^1]: 19. Inga schiedeana Steud., Nom. Bot. 1: 810, 1840. (Based on I. flexuosa Schlecht., non Graham)
[^2]: Mexico: chiapas: Finca Yolanda, C. A. Purpus 6811 (F, GH, MO). oaxaca: Ubero, Ll. Williams 9136 (F). tabasco: Teapa, Linden 726 (K).

 British Honduras: Camp 6, Vaca Road, Lundell 6544 (GH, NY); El Dorado, Schipp 387 (F); Gracie Rock, Sibun River, Gentle 1729 (MO, NY); Middlessex, Hope 1 (F), Schipp 294 (F, GH, MO, NY, US); Stann Creek, Burns 11 (F, US); without locality, Peck 511 (GH).

 Guatemala: alta verapaz: Chamá, Iohnson 892 (US); Gubilgüitz, Tuerckheim 7855 (US); Sepacuité Cook \& Griggs 13 (US), 631 (US), 706 (US); Yalpemech, Steyermark 45212 (F). chimaltenango: Sibajá, Standley 62555 (F). escuintla: Pacayal, Santa Emilia, Bequaert 13 (F, GH). guatemala: Amatitlán, Popenoe 707 (US); Guarda Viejo, Kellermann 4397 (US); San Raimundo, Standley 63036 (F). izabal: Los Andes to Entre Ríos,

